cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180168 a(n) = 2*a(n-1) + 5*a(n-2), a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 11, 37, 129, 443, 1531, 5277, 18209, 62803, 216651, 747317, 2577889, 8892363, 30674171, 105810157, 364991169, 1259033123, 4343022091, 14981209797, 51677530049, 178261109083, 614909868411, 2121125282237, 7316799906529, 25239226224243, 87062451981131
Offset: 0

Views

Author

Gary W. Adamson, Aug 14 2010

Keywords

Examples

			a(5) = 443 = 2*a(4) + 5*a(3) = 2*129 + 5*37.
Using the INVERT operation, a(4) = 129 = (38, 14, 6, 2, 1) dot (1, 1, 3, 11, 37)
= (38 + 14 + 18 + 22 + 37); where A026597 = (1, 2, 6, 14, 38, 94,...).
		

Crossrefs

Cf. A026597.

Programs

  • Mathematica
    LinearRecurrence[{2, 5}, {1, 3}, 50] (* G. C. Greubel, Feb 18 2017 *)
  • PARI
    x='x+O('x^25); Vec((1 + x)/(1 - 2*x - 5*x^2)) \\ G. C. Greubel, Feb 18 2017

Formula

G.f.: (1 + x)/(1 - 2*x - 5*x^2).
Equals INVERT transform of A026597: (1, 2, 6, 14, 38, 94,...).
a(n) = (1/6)*( -(1-sqrt(6))^n*sqrt(6) + sqrt(6)*(1+sqrt(6))^n + 3*(1-sqrt(6))^n + 3*(1 +sqrt(6))^n ). - Alexander R. Povolotsky, Aug 15 2010
a(n) = A176812(n)/3 = A002532(n) + A002532(n+1). - R. J. Mathar, Oct 11 2011