A180174 Triangle read by rows of the numbers C(n,k) of k-subsets of a quadratically populated n-multiset M.
1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 5, 7, 9, 10, 10, 10, 10, 10, 9, 7, 5, 3, 1, 1, 4, 9, 16, 25, 35, 45, 55, 65, 75, 84, 91, 96, 99, 100, 100, 100, 99, 96, 91, 84, 75, 65, 55, 45, 35, 25, 16, 9, 4, 1, 1, 5, 14, 30, 55, 90, 135, 190, 255, 330, 414, 505, 601, 700, 800, 900, 1000, 1099
Offset: 0
Examples
For n=4 one has M=[1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]. For k=7 we have 55 subsets from M: [1, 2, 2, 3, 3, 4, 4], [1, 2, 3, 3, 4, 4, 4], [1, 2, 3, 3, 3, 4, 4], [1, 2, 2, 3, 4, 4, 4], [1, 2, 2, 3, 3, 3, 4], [1, 2, 2, 2, 3, 4, 4], [1, 2, 2, 2, 3, 3, 4], [2, 2, 3, 3, 4, 4, 4], [2, 2, 3, 3, 3, 4, 4], [2, 2, 2, 3, 3, 4, 4], [1, 2, 2, 2, 3, 3, 3], [1, 2, 2, 2, 4, 4, 4], [1, 3, 3, 3, 4, 4, 4], [2, 3, 3, 3, 4, 4, 4], [2, 2, 2, 3, 4, 4, 4], [2, 2, 2, 3, 3, 3, 4], [1, 2, 3, 4, 4, 4, 4], [1, 2, 3, 3, 3, 3, 4], [1, 2, 2, 2, 2, 3, 4], [1, 2, 2, 3, 3, 3, 3], [1, 2, 2, 2, 2, 3, 3], [1, 2, 2, 4, 4, 4, 4], [1, 2, 2, 2, 2, 4, 4], [1, 3, 3, 4, 4, 4, 4], [1, 3, 3, 3, 3, 4, 4], [2, 3, 3, 4, 4, 4, 4], [2, 3, 3, 3, 3, 4, 4], [2, 2, 3, 4, 4, 4, 4], [2, 2, 3, 3, 3, 3, 4], [2, 2, 2, 2, 3, 4, 4], [2, 2, 2, 2, 3, 3, 4], [2, 2, 2, 3, 3, 3, 3], [2, 2, 2, 2, 3, 3, 3], [2, 2, 2, 4, 4, 4, 4], [2, 2, 2, 2, 4, 4, 4], [3, 3, 3, 4, 4, 4, 4], [3, 3, 3, 3, 4, 4, 4], [1, 2, 3, 3, 3, 3, 3], [1, 2, 4, 4, 4, 4, 4], [1, 3, 4, 4, 4, 4, 4], [1, 3, 3, 3, 3, 3, 4], [2, 3, 4, 4, 4, 4, 4], [2, 3, 3, 3, 3, 3, 4], [2, 2, 3, 3, 3, 3, 3], [2, 2, 4, 4, 4, 4, 4], [3, 3, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 4, 4], [1, 3, 3, 3, 3, 3, 3], [1, 4, 4, 4, 4, 4, 4], [2, 3, 3, 3, 3, 3, 3], [2, 4, 4, 4, 4, 4, 4], [3, 4, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 3, 4], [3, 3, 3, 3, 3, 3, 3], [4, 4, 4, 4, 4, 4, 4].
Programs
-
Maple
with(combinat) kend := 4; Liste := NULL; for k from 0 to kend do Liste := Liste, `$`(k, k^2) end do; Liste := [Liste]; for k from 0 to 2^(kend+1)-1 do Teilergebnis[k] := choose(Liste, k) end do; seq(nops(Teilergebnis[k]), k = 0 .. 2^(kend+1)-1) ' Excel VBA Sub A180174() Dim n As Long, nend As Long, k As Long, kk As Long, length_row As Long, length_sum As Long Dim ATable(10, -1000 To 1000) As Double, Summe As Double Dim offset_row As Integer, offset_column As Integer Worksheets("Tabelle2").Select Cells.Select Selection.ClearContents Range("A1").Select offset_row = 1 offset_column = 1 nend = 7 ATable(0, 0) = 1 Cells(0 + offset_row, 0 + offset_column) = 1 For n = 1 To nend length_row = n * (n + 1) * (2 * n + 1) / 6 length_sum = n ^ 2 + 1 For k = 0 To length_row / 2 Summe = 0 For kk = k - length_sum + 1 To k Summe = Summe + ATable(n - 1, kk) Next kk ATable(n, k) = Summe Cells(n + offset_row, k + offset_column) = ATable(n, k) ATable(n, length_row - k) = Summe Cells(n + offset_row, length_row - k + 0 + offset_column) = ATable(n, k) Next k Next n End Sub
Formula
C(0,0) = 0.
C(n,k) = sum_{j=(k-LS+1)}^{k} C(n-1,j).
for n > 0 and k=1,...,LR with LS = n^2+1 and LR = n*(n+1)*(2*n+1)/6.
C(n,k) = C(n,LR-k).
Comments