A180246 Triangle T(n,k) read by rows: T(n,k) = Sum_{j=0..k} (-1)^j *binomial(n+1,j)*(k+2-j)^n, 0 <= k < n.
2, 4, -3, 8, -5, 4, 16, 1, 11, -5, 32, 51, 46, -14, 6, 64, 281, 337, 22, 22, -7, 128, 1163, 2472, 1121, 176, -27, 8, 256, 4257, 15703, 15493, 4419, 163, 37, -9, 512, 14563, 88354, 155980, 88486, 14398, 622, -44, 10, 1024, 47785, 455357, 1310024, 1310816, 454730, 48170, 848, 56, -11
Offset: 1
Examples
Triangle begins with: 2; 4, -3; 8, -5, 4; 16, 1, 11, -5; 32, 51, 46, -14, 6; 64, 281, 337, 22, 22, -7; 128, 1163, 2472, 1121, 176, -27, 8; 256, 4257, 15703, 15493, 4419, 163, 37, -9; 512, 14563, 88354, 155980, 88486, 14398, 622, -44, 10; 1024, 47785, 455357, 1310024, 1310816, 454730, 48170, 848, 56, -11; ...
References
- B. Harris and C J. Park, A generalization of Eulerian numbers with a probabilistic Application, Statistics and Probability Letters 20 (1994), page 40
Links
- G. C. Greubel, Rows n=1..100 of triangle, flattened
Programs
-
GAP
Flat(List([1..12], n-> List([0..n-1], k-> Sum([0..k], j-> (-1)^j*Binomial(n+1, j)*(k-j+2)^n )))); # G. C. Greubel, Feb 23 2019
-
Magma
[[(&+[(-1)^j*Binomial(n+1, j)*(k-j+2)^n: j in [0..k]]): k in [0..n-1]]: n in [1..12]]; // G. C. Greubel, Feb 23 2019
-
Maple
A180246 := proc(n,k) add( (-1)^v*binomial(n+1,v)*(k+2-v)^n,v=0..k) ; end proc: # R. J. Mathar, Jan 29 2011 P := proc(n,x) option remember; if n = 0 then 1 else (n*x+2*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x); expand(%) fi end: A180246 := (n,k) -> coeff(P(n,x),x,k): seq(print(seq(A180246(n,k),k=0..n-1)),n=0..10); # Peter Luschny, Mar 07 2014
-
Mathematica
t[n_, j_, d_]:= Sum[(-1)^v *Binomial[n+1, v](j+d-v)^n, {v, 0, j}]; Table[Flatten[Table[Table[t[n,k,m], {k,0,n-1}], {n,1,10}]], {m,0,10}] (* This sequence corresponds to m=2 *) Table[Sum[(-1)^j*Binomial[n+1, j]*(k-j+2)^n, {j,0,k}], {n,1,12}, {k,0,n-1}]//Flatten
-
PARI
{T(n,k) = sum(j=0,k, (-1)^j*binomial(n+1, j)*(k-j+2)^n)}; for(n=1,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 23 2019
-
Sage
[[sum((-1)^j*binomial(n+1, j)*(k-j+2)^n for j in (0..k)) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Feb 23 2019
Formula
T(n,k) = Sum_{j=0..k} (-1)^j *binomial(n+1,j)*(k+2-j)^n, for k=0..n-1.
Comments