A180249 a(n) is the total number of k-reverses of n.
1, 2, 4, 8, 16, 26, 50, 80, 130, 212, 342, 518, 820, 1276, 1864, 2960, 4336, 6704, 9710, 15068, 21368, 33420, 47082, 72950, 102316, 158888, 220882, 342616, 475108, 734816, 1015778, 1569680, 2161944, 3337952, 4587200, 7069748, 9699292, 14932444, 20445520
Offset: 1
Keywords
References
- John P. McSorley: Counting k-compositions with palindromic and related structures. Preprint, 2010.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
f[n_Integer] := Block[{c = 0, k = 1, ip = IntegerPartitions@ n, lmt = 1 + PartitionsP@ n, ipk}, While[k < lmt, c += g[ ip[[k]]]; k++ ]; c]; g[lst_List] := Block[{c = 0, len = Length@ lst, per = Permutations@ lst}, While[ Length@ per > 0, rl = Union[ RotateLeft[ per[[1]], # ] & /@ Range@ len]; If[ MemberQ[rl, Reverse@ per[[1]]], c += Length@ rl]; per = Complement[ per, rl]]; c]; Array[f, 24] (* Robert G. Wilson v, Aug 25 2010 *) b[n_] := Sum[MoebiusMu[n/d] * If[OddQ[d], 2, 3] * 2^Quotient[d-1, 2], {d, Divisors[n]}]; a[n_] := Sum[d*b[d], {d, Divisors[n]}] / 2; Array[a, 39] (* Jean-François Alcover, Nov 04 2017, after Andrew Howroyd *)
-
PARI
\\ here b(n) is A056493 b(n) = sumdiv(n, d, moebius(n/d) * if(d%2,2,3) * 2^((d-1)\2)); a(n) = sumdiv(n, d, d*b(d)) / 2; \\ Andrew Howroyd, Oct 07 2017
Formula
a(n) = Sum_{d|n} d*A056493(d)/2. - Andrew Howroyd, Oct 07 2017
From Petros Hadjicostas, Oct 15 2017: (Start)
a(n) = (n/2)*Sum_{d|n} (phi^(-1)(d)/d)*b(n/d), where phi^(-1)(n) = A023900(n) is the Dirichlet inverse of the Euler totient function and b(n) = A029744(n+1) (= 3*2^((n/2)-1), if n is even, and = 2^((n+1)/2), if n is odd).
G.f.: Sum_{n>=1} phi^(-1)(n)*g(x^n), where phi^(-1)(n) = A023900(n) and g(x) = x*(x+1)*(2*x+1)/(1-2*x^2)^2.
(End)
Extensions
a(11) - a(24) from Robert G. Wilson v, Aug 25 2010
a(25) - a(27) from Robert G. Wilson v, Aug 29 2010
Terms a(28) and beyond from Andrew Howroyd, Oct 07 2017
Comments