cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180252 Numbers where all prime divisors are of the form k^2+1.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 17, 20, 25, 32, 34, 37, 40, 50, 64, 68, 74, 80, 85, 100, 101, 125, 128, 136, 148, 160, 170, 185, 197, 200, 202, 250, 256, 257, 272, 289, 296, 320, 340, 370, 394, 400, 401, 404, 425, 500, 505, 512, 514
Offset: 1

Views

Author

Michel Lagneau, Jan 20 2011

Keywords

Examples

			a(17) = 74 because 74 = 2*37 = (1^2+1)*(6^2+1).
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(1..50):U:=array(1..1000):k:=1:for m from 1 to 300
      do:x:=m^2+1:if type(x,prime)=true then T[k]:=x:k:=k+1:else fi:od:for x from
      2 to 2000 do: B:=factorset(x):yy:=nops(B):A:=convert(T, set):if A intersect
      B = B then printf(`%d, `, x):else fi:od:
  • Mathematica
    Select[Range@520, And @@ IntegerQ /@ Sqrt[FactorInteger[#][[All, 1]] - 1] &] (* Ivan Neretin, Aug 31 2016 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A002496} p/(p-1) = Product_{k in A005574} (1 + 1/k^2) = 2.809865... - Amiram Eldar, Sep 27 2020