cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A181436 Numbers k such that the prime divisors of k^2 + 1 are of the form q^2 + 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 13, 14, 16, 20, 24, 26, 36, 38, 40, 43, 54, 56, 66, 68, 74, 84, 90, 94, 110, 116, 117, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176, 180, 183, 184, 204, 206, 210, 224, 230, 236, 240, 250, 256, 260, 264, 270, 280, 284, 293, 300, 306, 314, 326, 327
Offset: 1

Views

Author

Michel Lagneau, Jan 29 2011

Keywords

Examples

			183 is in the sequence because 183^2 + 1 = 2*5*17*197 and 2 = 1^2 + 1, 5 = 2^2+1, 17 = 4^2+1 and 197 = 14^2 + 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=1000:for n from 1 to nn do: x:=n^2+1:y:=factorset(x):ny:=nops(y):id:=0:for
      q from 1 to ny do: z:=y[q]-1:zz:=sqrt(z):if zz=floor(zz) then id:=id+1:else  fi:od:if id=ny then printf(`%d, `,n):else fi:od:
  • Mathematica
    Select[Range@330, And @@ IntegerQ /@ Sqrt[FactorInteger[#^2 + 1][[All, 1]] - 1] &] (* Ivan Neretin, Aug 31 2016 *)
  • PARI
    isok(n) = {fn = factor(n^2+1)[,1]; for (k=1, #fn, if (!issquare(fn[k]-1), return (0));); 1;} \\ Michel Marcus, Sep 01 2016

A217276 Numbers n such that no prime divisors of n^2 + 1 are of the form a^2 + 1.

Original entry on oeis.org

34, 44, 46, 50, 60, 70, 76, 86, 96, 100, 104, 114, 136, 144, 164, 186, 190, 194, 196, 214, 220, 226, 244, 246, 254, 266, 274, 286, 294, 296, 304, 316, 320, 324, 330, 334, 346, 354, 356, 360, 366, 374, 390, 410, 416, 424, 426, 434, 454, 456, 460, 476, 484, 486
Offset: 1

Views

Author

Michel Lagneau, Sep 29 2012

Keywords

Examples

			34 is in the sequence because 34^2+1 = 1157 = 13*89 and the prime divisors 13, 89 are not of the form a^2+1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 100 do: x:=factorset(n^2+1):n1:=nops(x):ii:=0:for m from 1 to n1 do:y:=sqrt(x[m]-1):if y=floor(y) then ii:=1:else fi:od:if ii=0 then printf(`%d, `,n):else fi:od:
  • Mathematica
    fQ[n_] := Module[{lst = Transpose[FactorInteger[n^2 + 1]][[1]]}, Length[lst] > 1 && And @@ (Not /@ IntegerQ /@ Sqrt[lst - 1])]; Select[Range[500], fQ] (* T. D. Noe, Oct 01 2012 *)

A216784 a(n) is the number of distinct prime divisors of n^2 + 1 of the form m^2 + 1.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 0, 1, 1, 2, 2, 1, 1, 1, 1, 3, 0, 1, 0, 3, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 0, 1, 2, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 1, 0, 2
Offset: 1

Views

Author

Michel Lagneau, Oct 15 2012

Keywords

Comments

a(m) = 0 for m = A217276(n).

Examples

			a(13) = 3 because 13^2+1 = 170 = 2*5*17 with 3 divisors of the form m^2+1 such that 2 = 1^2+1, 5=2^2+1 and 17 = 4^2+1.
a(34) = 0 because 34^2+1 = 1157 = 13*89 and the prime divisors 13, 89 are not of the form m^2+1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 100 do:x:=n^2+1:y:=factorset(x):n1:=nops(y):i:=0:for k from 1 to n1 do:z:=sqrt(y[k]-1):if z=floor(z) then i:=i+1:else fi:od: printf(`%d, `,i):od:
    # second Maple program:
    a:= n-> nops(select(x-> issqr(x-1), ifactors(n^2+1)[2][..., 1])):
    seq(a(n), n=1..87);  # Alois P. Heinz, Jul 24 2025
  • Mathematica
    a[n_] := Length @ Select[FactorInteger[n^2 + 1][[;;,1]], IntegerQ @ Sqrt[# - 1] &]; Array[a, 100] (* Amiram Eldar, Sep 11 2019 *)

A217279 Numbers of the form n^2 + 1 without prime divisors of the form a^2 + 1.

Original entry on oeis.org

1157, 1937, 2117, 2501, 3601, 4901, 5777, 7397, 9217, 10001, 10817, 12997, 18497, 20737, 26897, 34597, 36101, 37637, 38417, 45797, 48401, 51077, 59537, 60517, 64517, 70757, 75077, 81797, 86437, 87617, 92417, 99857, 102401, 104977, 108901, 111557, 119717
Offset: 1

Views

Author

Michel Lagneau, Sep 29 2012

Keywords

Comments

The corresponding n are in A217276.
a(n) == 1, 17, 37, 57, 77, 97 mod 100.

Examples

			1157 is in the sequence because 1157 = 34^2 + 1 = 13*89 and the numbers 13, 89 are not of the form 1 plus a square.
		

Crossrefs

Programs

  • Maple
    isA217279 := proc(n)
        if issqr(n-1) then
            for d in numtheory[factorset](n) do
                if issqr(d-1) then
                    return false;
                end if;
            end do:
            return true ;
        else
            false;
        end if;
    end proc:
    for n from 1 to 300 do
        if isA217279(n^2+1) then
            printf("%d ",n^2+1) ;
        end if;
    end do: # R. J. Mathar, Oct 01 2012
  • Mathematica
    Select[1 + Range[400]^2, Not[PrimeQ[#]] && Intersection[Divisors[#], 1 + Range[Sqrt[# - 1] - 1]^2] == {} &] (* Alonso del Arte, Sep 29 2012 *)

A368544 The number of divisors of n whose prime factors are all of the form k^2+1.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 1, 4, 1, 3, 1, 2, 2, 5, 2, 2, 1, 6, 1, 2, 1, 4, 3, 2, 1, 3, 1, 4, 1, 6, 1, 4, 2, 3, 2, 2, 1, 8, 1, 2, 1, 3, 2, 2, 1, 5, 1, 6, 2, 3, 1, 2, 2, 4, 1, 2, 1, 6, 1, 2, 1, 7, 2, 2, 1, 6, 1, 4, 1, 4, 1, 4, 3, 3, 1, 2, 1, 10, 1, 2, 1, 3, 4, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2023

Keywords

Comments

The number of terms of A180252 that divide n.

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[FactorInteger[n][[;; , 1]], IntegerQ[Sqrt[# - 1]] &]; f[p_, e_] := If[q[p], e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(issquare(f[i,1]-1), f[i,2] + 1, 1))};
    
  • Python
    from math import prod
    from sympy import factorint
    from sympy.ntheory.primetest import is_square
    def A368544(n): return prod(e+1 for p, e in factorint(n).items() if is_square(p-1)) # Chai Wah Wu, Dec 30 2023

Formula

Multiplicative with a(p^e) = e+1 if p is of the form k^2+1, and 1 otherwise.
a(n) >= 1, with equality if and only if all the prime factors of n are in A070303.
a(n) <= A000005(n), with equality if and only if n is in A180252.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{k in A005574} (1 + 1/k^2) = 2.80986546... .
Showing 1-5 of 5 results.