A180266 a(0) = 0; a(n) = C(2*n-2,n-1)*(n^2-2*n+2)/n for n >= 1.
0, 1, 2, 10, 50, 238, 1092, 4884, 21450, 92950, 398684, 1696396, 7171892, 30161740, 126293000, 526864680, 2191034970, 9086921190, 37596989100, 155232577500, 639749274780, 2632212288420, 10814090022840, 44369043365400
Offset: 0
Keywords
References
- Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, Second Edition, Dover, New York, 1966, Chptr. XVIII Ball Games, p. 196.
Programs
-
Mathematica
Figurate[ngon_, rank_, dim_] := Binomial[rank + dim - 2, dim - 1] ((rank - 1)*(ngon - 2) + dim)/dim; Table[ Figurate[n, n, n], {n, 50}] Join[{0},Table[Binomial[2n-2,n-1] (n^2-2n+2)/n,{n,30}]] (* Harvey P. Dale, Sep 22 2019 *)
Formula
From Ilya Gutkovskiy, Mar 29 2018: (Start)
O.g.f.: 1 - (1 - 7*x + 10*x^2)/(1 - 4*x)^(3/2).
E.g.f.: 1 - exp(2*x)*((1 - 3*x)*BesselI(0,2*x) + 2*x*BesselI(1,2*x)).
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+1). (End)
Comments