A180272 a(n) = binomial(n, A002024(n+1)-1) where A002024 is "n appears n times".
1, 1, 2, 3, 6, 10, 20, 35, 56, 84, 210, 330, 495, 715, 1001, 3003, 4368, 6188, 8568, 11628, 15504, 54264, 74613, 100947, 134596, 177100, 230230, 296010, 1184040, 1560780, 2035800, 2629575, 3365856, 4272048, 5379616, 6724520, 30260340, 38608020, 48903492
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 +... Terms are shown below in parenthesis as they appear in Pascals triangle: (1); 1,(1); 1,(2),1; 1,3,(3),1; 1,4,(6),4,1; 1,5,(10),5,1; 1,6,15,(20),15,6,1; 1,7,21,(35),35,21,7,1; 1,8,28,(56),70,56,28,8,1; 1,9,36,(84),126,126,84,36,9,1; 1,10,45,120,(210),252,210,120,45,10,1; ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1000
Programs
-
PARI
{a(n)=binomial(n,(sqrtint(8*n+1)-1)\2)}
-
Python
from math import comb, isqrt def A180272(n): return comb(n,(isqrt(n+1<<3)+1>>1)-1) # Chai Wah Wu, Oct 17 2022
Comments