A180291 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to n-1.
1, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550
Offset: 2
Links
- R. H. Hardin, Table of n, a(n) for n = 2..59
Programs
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, 0, Sum[b[n - j, i - 1, k], {j, 0, Min[n, k]}]]]; a[n_] := b[n, n, n - 1] - b[n, n, n - 2]; Table[a[n], {n, 2, 51}] (* Jean-François Alcover, Aug 28 2022, after Alois P. Heinz in A180281 *) a[n_] := If[n == 2, 1, n*(n - 1)] (* Luca Ferrigno, Jul 13 2023 *)
Formula
Empirical: a(n) = n*binomial(n-1,n-2) for n > 2.
Empirical: a(n) = A002378(n-1) for n > 2. - R. J. Mathar, Sep 06 2010
Empirical: a(n) = n^2 - n for n > 2. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5. G.f.: x^2*(1 + 3*x - 3*x^2 + x^3)/(1-x)^3. - Colin Barker, Mar 18 2012
a(n) = n*(n-1) for n > 2. - Luca Ferrigno, Jul 13 2023
Comments