cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180324 Vassiliev invariant of fourth order for the torus knots.

Original entry on oeis.org

0, 3, 25, 98, 270, 605, 1183, 2100, 3468, 5415, 8085, 11638, 16250, 22113, 29435, 38440, 49368, 62475, 78033, 96330, 117670, 142373, 170775, 203228, 240100, 281775, 328653, 381150, 439698, 504745, 576755, 656208, 743600, 839443, 944265, 1058610, 1183038, 1318125
Offset: 0

Views

Author

Sergey Allenov, Jan 18 2011

Keywords

Comments

a(n) is the Vassiliev invariant of fourth order for the torus knots. a(n) can be calculated as the number of attachments of the two arrow diagrams in the arrow diagram of the torus knot. Arrow diagram of the torus knot is 2n+1 intersecting arrows with mixing ends.
Antidiagonal sums of the convolution array A213847. - Clark Kimberling, Jul 05 2012
First differences of the terms produced by convolving the odd and even triangular numbers, with n>0. The sequence begins 0, 3, 28, 126, 396, 1001, 2184, 4284, 7752, 13167, 21252..starting at n=1 and has the formula (4*n^5 - 5*n^3 + 30*n)/30. - J. M. Bergot, Sep 09 2016

Examples

			a(1) = 1*2*3^2/6 = 3.
a(2) = 2*(2+1)*(2*2+1)^2/6 = 5^2 = 25.
		

Crossrefs

Programs

  • Maple
    a:=n->(1/6)*n*(n+1)*(2*n+1)^2;
    a:=n->binomial(2*n+2, 4)+binomial(2*n+2, 3)/2;
  • Mathematica
    Table[Binomial[2n+2,4]+Binomial[2n+2,3]/2,{n,0,40}] (* Harvey P. Dale, Sep 18 2018 *)
    Table[Sum[x^2 + y^2, {x, -g, g}, {y, -g, g}], {g, 0, 33}]/4 (* Horst H. Manninger, Jun 19 2025 *)
  • PARI
    a(n) = n*(n+1)*(2*n+1)^2/6

Formula

a(n) = (n*(n+1)*(2*n+1)^2)/6.
a(n) = C(2*n+2,4) + C(2*n+2,3)/2.
a(n) = (2*n+1)*A000330(n).
a(n) = 3*A000330(n)^2/A000217(n).
a(n) = (A000330(1) + A000330(2) + ... + A000330(2*n-1) + A000330(2*n))/2.
G.f.: x*(3+x)*(1+3*x)/(1-x)^5. - Colin Barker, Mar 17 2012
Sum_{n>=1} 1/a(n) = 30 - 3*Pi^2. - Amiram Eldar, Jun 20 2025
From Elmo R. Oliveira, Aug 20 2025: (Start)
E.g.f.: exp(x)*x*(2 + x)*(9 + 24*x + 4*x^2)/6.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A322677(n)/96 = A185096(n)/12 = A339483(n)/3. (End)