A180324 Vassiliev invariant of fourth order for the torus knots.
0, 3, 25, 98, 270, 605, 1183, 2100, 3468, 5415, 8085, 11638, 16250, 22113, 29435, 38440, 49368, 62475, 78033, 96330, 117670, 142373, 170775, 203228, 240100, 281775, 328653, 381150, 439698, 504745, 576755, 656208, 743600, 839443, 944265, 1058610, 1183038, 1318125
Offset: 0
Examples
a(1) = 1*2*3^2/6 = 3. a(2) = 2*(2+1)*(2*2+1)^2/6 = 5^2 = 25.
Links
- S. V. Allenov, Explicit formulas for Vassil'ev invariants of the fourth order for knots, Journal of Mathematical Sciences, New York: Springer, Vol. 157, No. 3 (2009), pp. 413-423.
- Michael Polyak and Oleg Viro, Gauss diagram formulas for Vassiliev invariants, Int. Math. Res. Notices, No. 11 (1994), pp. 445-453.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Maple
a:=n->(1/6)*n*(n+1)*(2*n+1)^2; a:=n->binomial(2*n+2, 4)+binomial(2*n+2, 3)/2;
-
Mathematica
Table[Binomial[2n+2,4]+Binomial[2n+2,3]/2,{n,0,40}] (* Harvey P. Dale, Sep 18 2018 *) Table[Sum[x^2 + y^2, {x, -g, g}, {y, -g, g}], {g, 0, 33}]/4 (* Horst H. Manninger, Jun 19 2025 *)
-
PARI
a(n) = n*(n+1)*(2*n+1)^2/6
Formula
a(n) = (n*(n+1)*(2*n+1)^2)/6.
a(n) = C(2*n+2,4) + C(2*n+2,3)/2.
a(n) = (2*n+1)*A000330(n).
G.f.: x*(3+x)*(1+3*x)/(1-x)^5. - Colin Barker, Mar 17 2012
Sum_{n>=1} 1/a(n) = 30 - 3*Pi^2. - Amiram Eldar, Jun 20 2025
From Elmo R. Oliveira, Aug 20 2025: (Start)
E.g.f.: exp(x)*x*(2 + x)*(9 + 24*x + 4*x^2)/6.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Comments