A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A213847
Rectangular array: (row n) = b**c, where b(h) = 4*h-1, c(h) = 2*n-3+2*h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
3, 16, 9, 47, 36, 15, 104, 89, 56, 21, 195, 176, 131, 76, 27, 328, 305, 248, 173, 96, 33, 511, 484, 415, 320, 215, 116, 39, 752, 721, 640, 525, 392, 257, 136, 45, 1059, 1024, 931, 796, 635, 464, 299, 156, 51, 1440, 1401
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
3....16...47....104...195...328
9....36...89....176...305...484
15...56...131...248...415...640
21...76...173...320...525...796
-
b[n_]:=4n-1;c[n_]:=2n-1;
t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
r[n_]:=Table[t[n,k],{k,1,60}] (* A213847 *)
Table[t[n,n],{n,1,40}] (* A213848 *)
s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
Table[s[n],{n,1,50}] (* A180324 *)
A322677
a(n) = 16*n*(n+1)*(2*n+1)^2.
Original entry on oeis.org
0, 288, 2400, 9408, 25920, 58080, 113568, 201600, 332928, 519840, 776160, 1117248, 1560000, 2122848, 2825760, 3690240, 4739328, 5997600, 7491168, 9247680, 11296320, 13667808, 16394400, 19509888, 23049600, 27050400, 31550688, 36590400, 42211008, 48455520
Offset: 0
(sqrt(2) - sqrt(1))^4 = (sqrt(9) - sqrt(8))^2 = sqrt(289) - sqrt(288). So a(1) = 288.
sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^k:
A033996(n) (k=2),
A322675 (k=3), this sequence (k=4).
-
A322677[n_] := 16*n*(n + 1)*(2*n + 1)^2; Array[A322677, 50, 0] (* or *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 288, 2400, 9408, 25920}, 50] (* Paolo Xausa, Aug 26 2025 *)
-
{a(n) = 16*n*(n+1)*(2*n+1)^2}
-
concat(0, Vec(96*x*(3 + x)*(1 + 3*x) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Dec 23 2018
A339483
Number of regular polygons that can be drawn with vertices on a centered hexagonal grid with side length n.
Original entry on oeis.org
0, 9, 75, 294, 810, 1815, 3549, 6300, 10404, 16245, 24255, 34914, 48750, 66339, 88305, 115320, 148104, 187425, 234099, 288990, 353010, 427119, 512325, 609684, 720300, 845325, 985959, 1143450, 1319094, 1514235, 1730265, 1968624, 2230800, 2518329, 2832795
Offset: 0
There are a(2) = 75 regular polygons that can be drawn on the centered hexagonal grid with side length 2: A000537(2) = 9 regular hexagons and A008893(n) = 66 equilateral triangles.
The nine hexagons are:
* . * . * . * * .
. . . . * . . * * . * .
* . . . * . . . . . . * * . .
. . . . * . . * . . . .
* . * . * . . . .
1 1 7
which are marked with the number of ways to draw the hexagons up to translation.
The 66 equilateral triangles are:
* . . * . . * . . * . * * . . . . .
* * . . . . * . . . . . . . . . . . . . * . . *
. . . . . . * . . . . . . * . . . * . . . . . . * . . . . .
. . . . . . . . * . . . . . . . . . . . . . . .
. . . . . . . . . . . . * . . . * .
24 14 12 12 2 2
which are marked with the number of ways to draw the triangles up to translation and dihedral action of the hexagon.
A302758
a(n) = n^2*(n*(4*n + 3) + 3*n*(-1)^n - 4)/96.
Original entry on oeis.org
0, 1, 3, 14, 25, 66, 98, 200, 270, 475, 605, 966, 1183, 1764, 2100, 2976, 3468, 4725, 5415, 7150, 8085, 10406, 11638, 14664, 16250, 20111, 22113, 26950, 29435, 35400, 38440, 45696, 49368, 58089, 62475, 72846, 78033, 90250, 96330, 110600, 117670, 134211, 142373, 161414
Offset: 1
-
List([1..50], n -> n^2*(n*(4*n+3)+3*n*(-1)^n-4)/96); # Bruno Berselli, Apr 13 2018
-
[div(n^2*(n*(4*n+3)+3*n*(-1)^n-4), 96) for n in 1:50] |> println # Bruno Berselli, Apr 13 2018
-
[n^2*(n*(4*n+3)+3*n*(-1)^n-4)/96: n in [1..50]]; // Bruno Berselli, Apr 13 2018
-
Table[n*Floor[n/2]*(1 + Floor[n/2])*(3 n - 1 - 2*Floor[n/2])/12, {n, 50}]
Table[n^2 (n (4 n + 3) + 3 n (-1)^n - 4)/96, {n, 1, 50}] (* Bruno Berselli, Apr 13 2018 *)
-
vector(50, n, nn; n^2*(n*(4*n+3)+3*n*(-1)^n-4)/96) \\ Bruno Berselli, Apr 13 2018
-
[n**2*(n*(4*n+3)+3*n*(-1)**n-4)/96 for n in range(1, 50)] # Bruno Berselli, Apr 13 2018
-
[n^2*(n*(4*n+3)+3*n*(-1)^n-4)/96 for n in (1..50)] # Bruno Berselli, Apr 13 2018
A232535
Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(n,k) = (binomial(2*n,2*k) + binomial(2*n+1,2*k))/2.
Original entry on oeis.org
1, 1, 2, 1, 8, 3, 1, 18, 25, 4, 1, 32, 98, 56, 5, 1, 50, 270, 336, 105, 6, 1, 72, 605, 1320, 891, 176, 7, 1, 98, 1183, 4004, 4719, 2002, 273, 8, 1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9, 1, 162, 3468, 22848, 59670, 68068, 34476, 7344, 561, 10, 1, 200, 5415
Offset: 0
Triangle begins:
1
1, 2
1, 8, 3
1, 18, 25, 4
1, 32, 98, 56, 5
1, 50, 270, 336, 105, 6
1, 72, 605, 1320, 891, 176, 7
1, 98, 1183, 4004, 4719, 2002, 273, 8
1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9
-
T := (n,k) -> binomial(2*n, 2*k)*(2*n+1-k)/(2*n+1-2*k);
seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Nov 26 2013
-
Flatten[Table[(Binomial[2n,2k]+Binomial[2n+1,2k])/2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 05 2015 *)
Showing 1-6 of 6 results.
Comments