cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A213847 Rectangular array: (row n) = b**c, where b(h) = 4*h-1, c(h) = 2*n-3+2*h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

3, 16, 9, 47, 36, 15, 104, 89, 56, 21, 195, 176, 131, 76, 27, 328, 305, 248, 173, 96, 33, 511, 484, 415, 320, 215, 116, 39, 752, 721, 640, 525, 392, 257, 136, 45, 1059, 1024, 931, 796, 635, 464, 299, 156, 51, 1440, 1401
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2012

Keywords

Comments

Principal diagonal: A213848.
Antidiagonal sums: A180324.
Row 1, (3,7,11,15,...)**(1,3,5,7,...): A172482.
Row 2, (3,7,11,15,...)**(3,5,7,9,...): (4*k^3 + 15*k^2 + 8*k)/3.
Row 3, (3,7,11,15,...)**(5,7,9,13,...): (4*k^3 + 27*k^2 + 14*k)/3.
For a guide to related arrays, see A212500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
3....16...47....104...195...328
9....36...89....176...305...484
15...56...131...248...415...640
21...76...173...320...525...796
		

Crossrefs

Cf. A212500.

Programs

  • Mathematica
    b[n_]:=4n-1;c[n_]:=2n-1;
    t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
    TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
    Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
    r[n_]:=Table[t[n,k],{k,1,60}] (* A213847 *)
    Table[t[n,n],{n,1,40}] (* A213848 *)
    s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
    Table[s[n],{n,1,50}] (* A180324 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(6*n-3 + 4*(n-2)x - (2*n-3)*x^2) and g(x) = (1-x)^4.

A322677 a(n) = 16*n*(n+1)*(2*n+1)^2.

Original entry on oeis.org

0, 288, 2400, 9408, 25920, 58080, 113568, 201600, 332928, 519840, 776160, 1117248, 1560000, 2122848, 2825760, 3690240, 4739328, 5997600, 7491168, 9247680, 11296320, 13667808, 16394400, 19509888, 23049600, 27050400, 31550688, 36590400, 42211008, 48455520
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2018

Keywords

Examples

			(sqrt(2) - sqrt(1))^4 = (sqrt(9) - sqrt(8))^2 = sqrt(289) - sqrt(288). So a(1) = 288.
		

Crossrefs

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^k: A033996(n) (k=2), A322675 (k=3), this sequence (k=4).

Programs

  • Mathematica
    A322677[n_] := 16*n*(n + 1)*(2*n + 1)^2; Array[A322677, 50, 0] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 288, 2400, 9408, 25920}, 50] (* Paolo Xausa, Aug 26 2025 *)
  • PARI
    {a(n) = 16*n*(n+1)*(2*n+1)^2}
    
  • PARI
    concat(0, Vec(96*x*(3 + x)*(1 + 3*x) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Dec 23 2018

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^4.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^4.
a(n) = A033996(A033996(n)).
Sum_{n>=1} 1/a(n) = (5 - Pi^2/2)/16 = 0.004074862465957543161422156253870277... - Vaclav Kotesovec, Dec 23 2018
From Colin Barker, Dec 23 2018: (Start)
G.f.: 96*x*(3 + x)*(1 + 3*x)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4. (End)
From Elmo R. Oliveira, Aug 20 2025: (Start)
E.g.f.: 16*x*(2 + x)*(9 + 24*x + 4*x^2)*exp(x).
a(n) = 96*A180324(n) = 32*A339483(n) = 8*A185096(n). (End)

A339483 Number of regular polygons that can be drawn with vertices on a centered hexagonal grid with side length n.

Original entry on oeis.org

0, 9, 75, 294, 810, 1815, 3549, 6300, 10404, 16245, 24255, 34914, 48750, 66339, 88305, 115320, 148104, 187425, 234099, 288990, 353010, 427119, 512325, 609684, 720300, 845325, 985959, 1143450, 1319094, 1514235, 1730265, 1968624, 2230800, 2518329, 2832795
Offset: 0

Views

Author

Peter Kagey, Dec 06 2020

Keywords

Comments

The only regular polygons that can be drawn with vertices on the centered hexagonal grid are equilateral triangles and regular hexagons.

Examples

			There are a(2) = 75 regular polygons that can be drawn on the centered hexagonal grid with side length 2: A000537(2) = 9 regular hexagons and A008893(n) = 66 equilateral triangles.
The nine hexagons are:
    * . *       . * .       * * .
   . . . .     * . . *     * . * .
  * . . . *   . . . . .   . * * . .
   . . . .     * . . *     . . . .
    * . *       . * .       . . .
      1           1           7
which are marked with the number of ways to draw the hexagons up to translation.
The 66 equilateral triangles are:
    * . .       * . .       * . .       * . *       * . .       . . .
   * * . .     . . * .     . . . .     . . . .     . . . .     * . . *
  . . . . .   . * . . .   . . . * .   . . * . .   . . . . *   . . . . .
   . . . .     . . . .     * . . .     . . . .     . . . .     . . . .
    . . .       . . .       . . .       . . .       * . .       . * .
     24          14          12          12           2           2
which are marked with the number of ways to draw the triangles up to translation and dihedral action of the hexagon.
		

Crossrefs

Cf. A000537 (regular hexagons), A008893 (equilateral triangles).
Cf. A338323 (cubic grid).

Programs

  • Mathematica
    a[n_] := n*(n+1)*(2*n+1)^2/2; Array[a, 35, 0] (* Amiram Eldar, Jun 20 2025 *)

Formula

a(n) = A000537(n) + A008893(n).
a(n) = (1/2)*(n+1)*n*(2*n+1)^2.
a(n) = 3*A180324(n).
Sum_{n>=1} 1/a(n) = 10 - Pi^2 (A348670). - Amiram Eldar, Jun 20 2025
From Elmo R. Oliveira, Aug 20 2025: (Start)
G.f.: -3*x*(x + 3)*(3*x + 1)/(x - 1)^5.
E.g.f.: exp(x)*x*(2 + x)*(9 + 24*x + 4*x^2)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A185096(n)/4 = A322677(n)/32. (End)

A302758 a(n) = n^2*(n*(4*n + 3) + 3*n*(-1)^n - 4)/96.

Original entry on oeis.org

0, 1, 3, 14, 25, 66, 98, 200, 270, 475, 605, 966, 1183, 1764, 2100, 2976, 3468, 4725, 5415, 7150, 8085, 10406, 11638, 14664, 16250, 20111, 22113, 26950, 29435, 35400, 38440, 45696, 49368, 58089, 62475, 72846, 78033, 90250, 96330, 110600, 117670, 134211, 142373, 161414
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 12 2018

Keywords

Comments

Consider the partitions of n into two parts (p,q). Then 2*a(n) represents the total volume of the family of rectangular prisms with dimensions p, q, and (p + q).

Crossrefs

Cf. A302647.
First bisection is A180324.
After 0, subsequence of A107972.

Programs

  • GAP
    List([1..50], n -> n^2*(n*(4*n+3)+3*n*(-1)^n-4)/96); # Bruno Berselli, Apr 13 2018
    
  • Julia
    [div(n^2*(n*(4*n+3)+3*n*(-1)^n-4), 96) for n in 1:50] |> println # Bruno Berselli, Apr 13 2018
    
  • Magma
    [n^2*(n*(4*n+3)+3*n*(-1)^n-4)/96: n in [1..50]]; // Bruno Berselli, Apr 13 2018
  • Mathematica
    Table[n*Floor[n/2]*(1 + Floor[n/2])*(3 n - 1 - 2*Floor[n/2])/12, {n, 50}]
    Table[n^2 (n (4 n + 3) + 3 n (-1)^n - 4)/96, {n, 1, 50}] (* Bruno Berselli, Apr 13 2018 *)
  • PARI
    vector(50, n, nn; n^2*(n*(4*n+3)+3*n*(-1)^n-4)/96) \\ Bruno Berselli, Apr 13 2018
    
  • Python
    [n**2*(n*(4*n+3)+3*n*(-1)**n-4)/96 for n in range(1, 50)] # Bruno Berselli, Apr 13 2018
    
  • Sage
    [n^2*(n*(4*n+3)+3*n*(-1)^n-4)/96 for n in (1..50)] # Bruno Berselli, Apr 13 2018
    

Formula

a(n) = (n/2) * Sum_{i=1..floor(n/2)} i*(n - i).
a(n) = n*floor(n/2)*(1 + floor(n/2))*(3*n - 1 - 2*floor(n/2))/12.
From Bruno Berselli, Apr 13 2018: (Start)
O.g.f.: x^2*(1 + 2*x + 7*x^2 + 3*x^3 + 3*x^4)/((1 - x)^5*(1 + x)^4).
E.g.f.: x*(-3*(1 - exp(2*x))*exp(-x) + 3*(3 + 11*exp(2*x))*exp(-x)*x - 3*(1 - 9*exp(2*x))*exp(-x)*x^2 + 4*exp(x)*x^3)/96.
a(n) = n^2*(n*(4*n + 3) + 3*n*(-1)^n - 4)/96. Therefore:
a(n) = n^2*(2*n - 1)*(n + 2)/48 for n even; otherwise:
a(n) = n^2*(n - 1)*(n + 1)/24.
n^2*(4*n^2 + n - 1)*a(n+2) - 4*n^2*(n + 2)*a(n+1) - (n + 2)*(n + 3)*(4*n^2 + 9*n + 4)*a(n) = 0. (End)
Sum_{n>=2} 1/a(n) = 156/5 - 48*Pi/5 - 4*Pi^2 + 288*log(2)/5. - Amiram Eldar, Jun 20 2025

A232535 Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(n,k) = (binomial(2*n,2*k) + binomial(2*n+1,2*k))/2.

Original entry on oeis.org

1, 1, 2, 1, 8, 3, 1, 18, 25, 4, 1, 32, 98, 56, 5, 1, 50, 270, 336, 105, 6, 1, 72, 605, 1320, 891, 176, 7, 1, 98, 1183, 4004, 4719, 2002, 273, 8, 1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9, 1, 162, 3468, 22848, 59670, 68068, 34476, 7344, 561, 10, 1, 200, 5415
Offset: 0

Views

Author

Philippe Deléham, Nov 25 2013

Keywords

Comments

Sum_{k=0..n}T(n,k)*x^k = A164111(n), A000012(n), A002001(n), A001653(n+1), A001019(n), A166965(n) for x =-1, 0, 1, 2, 4, 9 respectively.

Examples

			Triangle begins:
1
1, 2
1, 8, 3
1, 18, 25, 4
1, 32, 98, 56, 5
1, 50, 270, 336, 105, 6
1, 72, 605, 1320, 891, 176, 7
1, 98, 1183, 4004, 4719, 2002, 273, 8
1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9
		

Crossrefs

Cf. Columns : A000012, A001105, A180324 ; Diagonals: A000027, A131423
Cf. T(2*n,n): A228329, Row sums : A002001

Programs

  • Maple
    T := (n,k) -> binomial(2*n, 2*k)*(2*n+1-k)/(2*n+1-2*k);
    seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Nov 26 2013
  • Mathematica
    Flatten[Table[(Binomial[2n,2k]+Binomial[2n+1,2k])/2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 05 2015 *)

Formula

G.f.: (1-x)/(1-2*x*(1+y)+x^2*(1-y)^2).
T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)+2*T(n-2,k-1)-T(n-2,k)-T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n.
T(n,k) = (A086645(n,k) + A091042(n,k))/2.
T(n,k) = binomial(2*n,2*k)*(2*n+1-k)/(2*n+1-2*k). - Peter Luschny, Nov 26 2013
Showing 1-6 of 6 results.