A322699
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is 1/2 * (-1 + Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 8, 2, 0, 0, 49, 24, 3, 0, 0, 288, 242, 48, 4, 0, 0, 1681, 2400, 675, 80, 5, 0, 0, 9800, 23762, 9408, 1444, 120, 6, 0, 0, 57121, 235224, 131043, 25920, 2645, 168, 7, 0, 0, 332928, 2328482, 1825200, 465124, 58080, 4374, 224, 8, 0
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 1, 8, 49, 288, 1681, 9800, ...
0, 2, 24, 242, 2400, 23762, 235224, ...
0, 3, 48, 675, 9408, 131043, 1825200, ...
0, 4, 80, 1444, 25920, 465124, 8346320, ...
0, 5, 120, 2645, 58080, 1275125, 27994680, ...
0, 6, 168, 4374, 113568, 2948406, 76545000, ...
-
Unprotect[Power]; 0^0 := 1; Protect[Power]; Table[(-1 + Sum[Binomial[2 k, 2 j] (# + 1)^(k - j)*#^j, {j, 0, k}])/2 &[n - k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jan 01 2019 *)
nmax = 9; row[n_] := LinearRecurrence[{4n+3, -4n-3, 1}, {0, n, 4n(n+1)}, nmax+1]; T = Array[row, nmax+1, 0]; A[n_, k_] := T[[n+1, k+1]];
Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 06 2019 *)
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
(0..n).map{|i| (0..k).inject(-1){|s, j| s + ncr(2 * k, 2 * j) * (i + 1) ** (k - j) * i ** j} / 2}
end
def A322699(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A322699(10)
A180324
Vassiliev invariant of fourth order for the torus knots.
Original entry on oeis.org
0, 3, 25, 98, 270, 605, 1183, 2100, 3468, 5415, 8085, 11638, 16250, 22113, 29435, 38440, 49368, 62475, 78033, 96330, 117670, 142373, 170775, 203228, 240100, 281775, 328653, 381150, 439698, 504745, 576755, 656208, 743600, 839443, 944265, 1058610, 1183038, 1318125
Offset: 0
a(1) = 1*2*3^2/6 = 3.
a(2) = 2*(2+1)*(2*2+1)^2/6 = 5^2 = 25.
- S. V. Allenov, Explicit formulas for Vassil'ev invariants of the fourth order for knots, Journal of Mathematical Sciences, New York: Springer, Vol. 157, No. 3 (2009), pp. 413-423.
- Michael Polyak and Oleg Viro, Gauss diagram formulas for Vassiliev invariants, Int. Math. Res. Notices, No. 11 (1994), pp. 445-453.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
a:=n->(1/6)*n*(n+1)*(2*n+1)^2;
a:=n->binomial(2*n+2, 4)+binomial(2*n+2, 3)/2;
-
Table[Binomial[2n+2,4]+Binomial[2n+2,3]/2,{n,0,40}] (* Harvey P. Dale, Sep 18 2018 *)
Table[Sum[x^2 + y^2, {x, -g, g}, {y, -g, g}], {g, 0, 33}]/4 (* Horst H. Manninger, Jun 19 2025 *)
-
a(n) = n*(n+1)*(2*n+1)^2/6
A339483
Number of regular polygons that can be drawn with vertices on a centered hexagonal grid with side length n.
Original entry on oeis.org
0, 9, 75, 294, 810, 1815, 3549, 6300, 10404, 16245, 24255, 34914, 48750, 66339, 88305, 115320, 148104, 187425, 234099, 288990, 353010, 427119, 512325, 609684, 720300, 845325, 985959, 1143450, 1319094, 1514235, 1730265, 1968624, 2230800, 2518329, 2832795
Offset: 0
There are a(2) = 75 regular polygons that can be drawn on the centered hexagonal grid with side length 2: A000537(2) = 9 regular hexagons and A008893(n) = 66 equilateral triangles.
The nine hexagons are:
* . * . * . * * .
. . . . * . . * * . * .
* . . . * . . . . . . * * . .
. . . . * . . * . . . .
* . * . * . . . .
1 1 7
which are marked with the number of ways to draw the hexagons up to translation.
The 66 equilateral triangles are:
* . . * . . * . . * . * * . . . . .
* * . . . . * . . . . . . . . . . . . . * . . *
. . . . . . * . . . . . . * . . . * . . . . . . * . . . . .
. . . . . . . . * . . . . . . . . . . . . . . .
. . . . . . . . . . . . * . . . * .
24 14 12 12 2 2
which are marked with the number of ways to draw the triangles up to translation and dihedral action of the hexagon.
A322675
a(n) = n * (4*n + 3)^2.
Original entry on oeis.org
0, 49, 242, 675, 1444, 2645, 4374, 6727, 9800, 13689, 18490, 24299, 31212, 39325, 48734, 59535, 71824, 85697, 101250, 118579, 137780, 158949, 182182, 207575, 235224, 265225, 297674, 332667, 370300, 410669, 453870, 499999, 549152, 601425, 656914, 715715, 777924, 843637
Offset: 0
(sqrt(2) - sqrt(1))^3 = 5*sqrt(2) - 7 = sqrt(50) - sqrt(49). So a(1) = 49.
sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^k:
A033996(n) (k=2), this sequence (k=3),
A322677 (k=4),
A322745 (k=5).
Showing 1-4 of 4 results.
Comments