cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A322699 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is 1/2 * (-1 + Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 8, 2, 0, 0, 49, 24, 3, 0, 0, 288, 242, 48, 4, 0, 0, 1681, 2400, 675, 80, 5, 0, 0, 9800, 23762, 9408, 1444, 120, 6, 0, 0, 57121, 235224, 131043, 25920, 2645, 168, 7, 0, 0, 332928, 2328482, 1825200, 465124, 58080, 4374, 224, 8, 0
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2018

Keywords

Examples

			Square array begins:
   0, 0,   0,    0,      0,       0,        0, ...
   0, 1,   8,   49,    288,    1681,     9800, ...
   0, 2,  24,  242,   2400,   23762,   235224, ...
   0, 3,  48,  675,   9408,  131043,  1825200, ...
   0, 4,  80, 1444,  25920,  465124,  8346320, ...
   0, 5, 120, 2645,  58080, 1275125, 27994680, ...
   0, 6, 168, 4374, 113568, 2948406, 76545000, ...
		

Crossrefs

Columns 0-5 give A000004, A001477, A033996, A322675, A322677, A322745.
Main diagonal gives A322746.
Cf. A173175 (A(n,2*n)), A322790.

Programs

  • Mathematica
    Unprotect[Power]; 0^0 := 1; Protect[Power]; Table[(-1 + Sum[Binomial[2 k, 2 j] (# + 1)^(k - j)*#^j, {j, 0, k}])/2 &[n - k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jan 01 2019 *)
    nmax = 9; row[n_] := LinearRecurrence[{4n+3, -4n-3, 1}, {0, n, 4n(n+1)}, nmax+1]; T = Array[row, nmax+1, 0]; A[n_, k_] := T[[n+1, k+1]];
    Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 06 2019 *)
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      (0..n).map{|i| (0..k).inject(-1){|s, j| s + ncr(2 * k, 2 * j) * (i + 1) ** (k - j) * i ** j} / 2}
    end
    def A322699(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A322699(10)

Formula

sqrt(A(n,k)+1) + sqrt(A(n,k)) = (sqrt(n+1) + sqrt(n))^k.
sqrt(A(n,k)+1) - sqrt(A(n,k)) = (sqrt(n+1) - sqrt(n))^k.
A(n,0) = 0, A(n,1) = n and A(n,k) = (4*n+2) * A(n,k-1) - A(n,k-2) + 2*n for k > 1.
A(n,k) = (T_{k}(2*n+1) - 1)/2 where T_{k}(x) is a Chebyshev polynomial of the first kind.
T_1(x) = x. So A(n,1) = (2*n+1-1)/2 = n.

A180324 Vassiliev invariant of fourth order for the torus knots.

Original entry on oeis.org

0, 3, 25, 98, 270, 605, 1183, 2100, 3468, 5415, 8085, 11638, 16250, 22113, 29435, 38440, 49368, 62475, 78033, 96330, 117670, 142373, 170775, 203228, 240100, 281775, 328653, 381150, 439698, 504745, 576755, 656208, 743600, 839443, 944265, 1058610, 1183038, 1318125
Offset: 0

Views

Author

Sergey Allenov, Jan 18 2011

Keywords

Comments

a(n) is the Vassiliev invariant of fourth order for the torus knots. a(n) can be calculated as the number of attachments of the two arrow diagrams in the arrow diagram of the torus knot. Arrow diagram of the torus knot is 2n+1 intersecting arrows with mixing ends.
Antidiagonal sums of the convolution array A213847. - Clark Kimberling, Jul 05 2012
First differences of the terms produced by convolving the odd and even triangular numbers, with n>0. The sequence begins 0, 3, 28, 126, 396, 1001, 2184, 4284, 7752, 13167, 21252..starting at n=1 and has the formula (4*n^5 - 5*n^3 + 30*n)/30. - J. M. Bergot, Sep 09 2016

Examples

			a(1) = 1*2*3^2/6 = 3.
a(2) = 2*(2+1)*(2*2+1)^2/6 = 5^2 = 25.
		

Crossrefs

Programs

  • Maple
    a:=n->(1/6)*n*(n+1)*(2*n+1)^2;
    a:=n->binomial(2*n+2, 4)+binomial(2*n+2, 3)/2;
  • Mathematica
    Table[Binomial[2n+2,4]+Binomial[2n+2,3]/2,{n,0,40}] (* Harvey P. Dale, Sep 18 2018 *)
    Table[Sum[x^2 + y^2, {x, -g, g}, {y, -g, g}], {g, 0, 33}]/4 (* Horst H. Manninger, Jun 19 2025 *)
  • PARI
    a(n) = n*(n+1)*(2*n+1)^2/6

Formula

a(n) = (n*(n+1)*(2*n+1)^2)/6.
a(n) = C(2*n+2,4) + C(2*n+2,3)/2.
a(n) = (2*n+1)*A000330(n).
a(n) = 3*A000330(n)^2/A000217(n).
a(n) = (A000330(1) + A000330(2) + ... + A000330(2*n-1) + A000330(2*n))/2.
G.f.: x*(3+x)*(1+3*x)/(1-x)^5. - Colin Barker, Mar 17 2012
Sum_{n>=1} 1/a(n) = 30 - 3*Pi^2. - Amiram Eldar, Jun 20 2025
From Elmo R. Oliveira, Aug 20 2025: (Start)
E.g.f.: exp(x)*x*(2 + x)*(9 + 24*x + 4*x^2)/6.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A322677(n)/96 = A185096(n)/12 = A339483(n)/3. (End)

A339483 Number of regular polygons that can be drawn with vertices on a centered hexagonal grid with side length n.

Original entry on oeis.org

0, 9, 75, 294, 810, 1815, 3549, 6300, 10404, 16245, 24255, 34914, 48750, 66339, 88305, 115320, 148104, 187425, 234099, 288990, 353010, 427119, 512325, 609684, 720300, 845325, 985959, 1143450, 1319094, 1514235, 1730265, 1968624, 2230800, 2518329, 2832795
Offset: 0

Views

Author

Peter Kagey, Dec 06 2020

Keywords

Comments

The only regular polygons that can be drawn with vertices on the centered hexagonal grid are equilateral triangles and regular hexagons.

Examples

			There are a(2) = 75 regular polygons that can be drawn on the centered hexagonal grid with side length 2: A000537(2) = 9 regular hexagons and A008893(n) = 66 equilateral triangles.
The nine hexagons are:
    * . *       . * .       * * .
   . . . .     * . . *     * . * .
  * . . . *   . . . . .   . * * . .
   . . . .     * . . *     . . . .
    * . *       . * .       . . .
      1           1           7
which are marked with the number of ways to draw the hexagons up to translation.
The 66 equilateral triangles are:
    * . .       * . .       * . .       * . *       * . .       . . .
   * * . .     . . * .     . . . .     . . . .     . . . .     * . . *
  . . . . .   . * . . .   . . . * .   . . * . .   . . . . *   . . . . .
   . . . .     . . . .     * . . .     . . . .     . . . .     . . . .
    . . .       . . .       . . .       . . .       * . .       . * .
     24          14          12          12           2           2
which are marked with the number of ways to draw the triangles up to translation and dihedral action of the hexagon.
		

Crossrefs

Cf. A000537 (regular hexagons), A008893 (equilateral triangles).
Cf. A338323 (cubic grid).

Programs

  • Mathematica
    a[n_] := n*(n+1)*(2*n+1)^2/2; Array[a, 35, 0] (* Amiram Eldar, Jun 20 2025 *)

Formula

a(n) = A000537(n) + A008893(n).
a(n) = (1/2)*(n+1)*n*(2*n+1)^2.
a(n) = 3*A180324(n).
Sum_{n>=1} 1/a(n) = 10 - Pi^2 (A348670). - Amiram Eldar, Jun 20 2025
From Elmo R. Oliveira, Aug 20 2025: (Start)
G.f.: -3*x*(x + 3)*(3*x + 1)/(x - 1)^5.
E.g.f.: exp(x)*x*(2 + x)*(9 + 24*x + 4*x^2)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A185096(n)/4 = A322677(n)/32. (End)

A322675 a(n) = n * (4*n + 3)^2.

Original entry on oeis.org

0, 49, 242, 675, 1444, 2645, 4374, 6727, 9800, 13689, 18490, 24299, 31212, 39325, 48734, 59535, 71824, 85697, 101250, 118579, 137780, 158949, 182182, 207575, 235224, 265225, 297674, 332667, 370300, 410669, 453870, 499999, 549152, 601425, 656914, 715715, 777924, 843637
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2018

Keywords

Examples

			(sqrt(2) - sqrt(1))^3 = 5*sqrt(2) - 7 = sqrt(50) - sqrt(49). So a(1) = 49.
		

Crossrefs

Column 3 of A322699.
sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^k: A033996(n) (k=2), this sequence (k=3), A322677 (k=4), A322745 (k=5).

Programs

  • PARI
    {a(n) = n*(4*n+3)^2}
    
  • PARI
    concat(0, Vec(x*(49 + 46*x + x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 23 2018

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^3.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^3.
Sum_{n>=1} 1/a(n) = 8/27 + 2*c/3 + Pi/18 - Pi^2/12 - log(2)/3 = 0.027956857336446942649782759291008857522041405948099294509008..., where c is the Catalan constant A006752. - Vaclav Kotesovec, Dec 23 2018
From Colin Barker, Dec 23 2018: (Start)
G.f.: x*(49 + 46*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
(End)
Showing 1-4 of 4 results.