A213848
Principal diagonal of the convolution array A213847.
Original entry on oeis.org
3, 36, 131, 320, 635, 1108, 1771, 2656, 3795, 5220, 6963, 9056, 11531, 14420, 17755, 21568, 25891, 30756, 36195, 42240, 48923, 56276, 64331, 73120, 82675, 93028, 104211, 116256, 129195, 143060, 157883, 173696
Offset: 1
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A003453
Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation and reflection.
Original entry on oeis.org
1, 3, 6, 11, 17, 26, 36, 50, 65, 85, 106, 133, 161, 196, 232, 276, 321, 375, 430, 495, 561, 638, 716, 806, 897, 1001, 1106, 1225, 1345, 1480, 1616, 1768, 1921, 2091, 2262, 2451, 2641, 2850, 3060, 3290, 3521, 3773, 4026
Offset: 5
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=5..1000
- Douglas Bowman and Alon Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv preprint arXiv:1209.6270 [math.CO], 2012. See Theorem 5(2).
- P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
- Petr Lisonek, Combinatorial families enumerated by quasi-polynomials, Journal of Combinatorial Theory, Series A, Volume 114, Issue 4, May 2007, Pages 619-630.
- Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
- N. J. A. Sloane, Transforms
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
-
T52:= proc(n)
if n mod 2 = 0 then (n-4)*(n-2)*(n+3)/24;
else (n-3)*(n^2-13)/24; fi end;
[seq(T52(n),n=5..80)]; # N. J. A. Sloane, Dec 28 2012
-
nd[n_]:=If[EvenQ[n],(n-4)(n-2) (n+3)/24,(n-3) (n^2-13)/24]; Array[nd,50,5] (* or *) LinearRecurrence[{2,1,-4,1,2,-1},{1,3,6,11,17,26},50] (* Harvey P. Dale, Jan 28 2013 *)
-
\\ See A295419 for DissectionsModDihedral()
{ my(v=DissectionsModDihedral(apply(i->y + O(y^4), [1..40]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017
A180324
Vassiliev invariant of fourth order for the torus knots.
Original entry on oeis.org
0, 3, 25, 98, 270, 605, 1183, 2100, 3468, 5415, 8085, 11638, 16250, 22113, 29435, 38440, 49368, 62475, 78033, 96330, 117670, 142373, 170775, 203228, 240100, 281775, 328653, 381150, 439698, 504745, 576755, 656208, 743600, 839443, 944265, 1058610, 1183038, 1318125
Offset: 0
a(1) = 1*2*3^2/6 = 3.
a(2) = 2*(2+1)*(2*2+1)^2/6 = 5^2 = 25.
- S. V. Allenov, Explicit formulas for Vassil'ev invariants of the fourth order for knots, Journal of Mathematical Sciences, New York: Springer, Vol. 157, No. 3 (2009), pp. 413-423.
- Michael Polyak and Oleg Viro, Gauss diagram formulas for Vassiliev invariants, Int. Math. Res. Notices, No. 11 (1994), pp. 445-453.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
a:=n->(1/6)*n*(n+1)*(2*n+1)^2;
a:=n->binomial(2*n+2, 4)+binomial(2*n+2, 3)/2;
-
Table[Binomial[2n+2,4]+Binomial[2n+2,3]/2,{n,0,40}] (* Harvey P. Dale, Sep 18 2018 *)
Table[Sum[x^2 + y^2, {x, -g, g}, {y, -g, g}], {g, 0, 33}]/4 (* Horst H. Manninger, Jun 19 2025 *)
-
a(n) = n*(n+1)*(2*n+1)^2/6
Showing 1-4 of 4 results.
Comments