cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180346 Primes that divide every circular permutation of the digits of at least one number of the form 123...(n-1)(n) (see A007908), where n is 3 digits long (that is, for some n in the range 99

Original entry on oeis.org

3, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 61, 67, 73, 83, 97, 101, 107, 127, 163, 211, 271, 277, 1009, 18973
Offset: 1

Views

Author

Marco Ripà, Jan 22 2011

Keywords

Comments

Every a(i) divides at least 192 permutations of the digits of an element belonging to [A007908]. Skipping the trivial case a(1)=3, the most recurring elements are a(2)=7 and a(10)=37. The occurrences in our 1386450 terms set are the following [A181373]:
a(2) | 7 ⇒ n=100+14*v (v=0,1,2,...,64)
a(3) | 11 ⇒ n=106+22*v (v=0,1,2,...,40)
a(4) | 13 ⇒ n=120+26*v (v=0,1,2,...,33)
a(5) | 17 ⇒ n=196+272*v (v=0,1,2)
a(6) | 19 ⇒ n=102+114*v (v=0,1,2,3,4,5,6,7)
a(7) | 23 ⇒ n=542
a(8) | 29 ⇒ n=400
a(9) | 31 ⇒ n=181+155*v (v=0,1,2,3,4,5)
a(10)| 37 ⇒ n=123+d(v),
(where d(v)=0,12,25,12,25,12,25... for v=0,1,2,3,...,47)
a(11) | 41 ⇒ n=216+205*v (v=0,1,2,3)
a(12) | 43 ⇒ n=372+301*v (v=0,1,2)
a(13) | 53 ⇒ n=127+689*v (v=0,1)
a(14) | 61 ⇒ n=616
a(15) | 67 ⇒ n=399
a(16) | 73 ⇒ n=196+584*v (v=0,1)
a(17) | 83 ⇒ n=118
a(18) | 97 ⇒ n=516
a(19) | 101 ⇒ n=416+404*v (v=0,1)
a(20) | 107 ⇒ n=884
a(21) | 127 ⇒ n=106
a(22) | 163 ⇒ n=576
a(23) | 211 ⇒ n=306
a(24) | 271 ⇒ n=936
a(25) | 277 ⇒ n=174
a(26) | 1009 ⇒ n=960
a(27) | 18973 ⇒ n=903
N.B.
Every coefficient of "v" is a multiple of i. This is a general property of [A007908], valid for an arbitrary fixed digits interval of the parameter "n" (10^k-1
a(28) >= prime(10^6) if it exists. - Chai Wah Wu, Nov 12 2015
Primes p such that p divides both A007908(m) and 10^A058183(m)-1 for some 99Chai Wah Wu, Oct 07 2023
a(28) > prime(2.3316*10^9) if it exists. Conjecture: 18973 is the last term. - Chai Wah Wu, Oct 09 2023

References

  • Vassilev-Missana and K. Atanassov, “Some Smarandache problems”, Hexis, 2004.

Crossrefs

Programs

  • PARI
    isA180346(p)={ isprime(p) & p!=2 & p!=5 & for(n=100,999, my(S=eval(concat(vector(n,i,Str(i)))),L=#Str(S)-1); S%p & next; for(k=1,L, (S=[1,10^L]*divrem(S,10))%p & next(2));return(n)) }  /* returns the least corresponding n or 0 if not in this sequence */ \\ M. F. Hasler, Jan 23 2011
    
  • Python
    from itertools import islice
    from sympy import nextprime
    def A180346_gen(startvalue=1): # generator of terms >= startvalue
        p = max(startvalue-1,0)
        while (p:=nextprime(p)):
            c, q, a, b = 0, 1, 10, 10
            for m in range(1,1000):
                if m >= b:
                    a = 10*a%p
                    b *= 10
                c = (c*a + m) % p
                q = q*a % p
                if m>99 and not (c or (q-1)%p):
                    yield p
                    break
    A180346_list = list(islice(A180346_gen(),20)) # Chai Wah Wu, Oct 07 2023

Formula

For n<10 the only a(i) is 3. If 9