cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180349 Gog words avoiding the subpattern 312.

Original entry on oeis.org

1, 2, 6, 26, 162, 1450, 18626, 343210, 9069306, 343611106, 18662952122, 1453016097506, 162144482866166, 25932885879826066
Offset: 1

Views

Author

Arvind Ayyer, Jan 18 2011

Keywords

Comments

Gog words of size n are words of length n in an alphabet of odd-sized tuples of increasing integers that satisfy the following conditions:
(1) The length of the word is n,
(2) each letter in the word has maximum entry at most n,
(3) an integer in an even-numbered position in a tuple is repeated in another tuple to its left and to its right in odd-numbered positions,
(4) every repeated integer alternates in odd- and even-numbered positions in subsequent tuples.
They are in natural bijection with alternating sign matrices.
Further, the integers c, a, b form a 312-subpattern of the Gog word w = x_1 x_2 ... x_n if the following conditions hold:
(1) c, a, b appear in odd positions in x_i, x_j, x_k, respectively, where i < j < k,
(2) b is not in an even position in x_(i+1), ..., x_(k-1),
(3) if x_j = (p_1, q_1, ..., p_(k-1), q_(k-1), p_k), either b > p_k or p_l < b < q_l for some l.
(4) a < b < c.
a(n) is equal to the number of gapless Gog triangles of size n, and also to the number of gapless Magog triangles of size n. - Ludovic Schwob, May 18 2024

Examples

			For n=3, there are 7 Gog words: (1)(2)(3), (1)(3)(2), (2)(1)(3), (2)(3)(1), (3)(1)(2), (3)(2)(1) and (2)(123)(2). Of these, all but (3)(1)(2) avoid the subpattern 312.
More complicated examples: 31(234)3 and 25(12356)542 contain the subpattern 312 but 25(12456)532 does not.
		

Crossrefs

Extensions

a(13)-a(14) from Ludovic Schwob, May 18 2024