A180354 a(n) = n^4 + 4*n.
0, 5, 24, 93, 272, 645, 1320, 2429, 4128, 6597, 10040, 14685, 20784, 28613, 38472, 50685, 65600, 83589, 105048, 130397, 160080, 194565, 234344, 279933, 331872, 390725, 457080, 531549, 614768, 707397, 810120, 923645, 1048704, 1186053
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A079908.
Programs
-
Mathematica
Table[n^4+4n,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,5,24,93,272},40] (* Harvey P. Dale, Jun 12 2017 *)
-
PARI
a(n) = n^4 + 4*n; \\ Michel Marcus, Jan 11 2014
Formula
From Chai Wah Wu, Oct 15 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: x*(3*x^3 - 23*x^2 + x - 5)/(x - 1)^5. (End)
Extensions
a(0) corrected by R. J. Mathar, Sep 19 2010