A180389 Number of permutations of 1..n with number of rises (p(i+1)>p(i)) the same as number of rises in the inverse permutation.
1, 1, 2, 6, 22, 96, 492, 2952, 20588, 164990, 1497740, 15187692, 169974040, 2078905752, 27567259896, 393759207372, 6025346314756, 98317949671110, 1703879074519500, 31251488731748108, 604748393942784976, 12312387380060084768, 263079571362773145632
Offset: 0
Keywords
Examples
For n=4, a(4)=22 are all permutations of length 4 except for 3142 (which has only one ascent, and two inverse ascents) and 2413 (which has two ascents, and only one inverse ascent). - _Kevin Dilks_, Jun 09 2015
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- Wouter Meeussen, Schur Polynomials
- Wouter Meeussen, Some notes on the link between A180389 and Schur polynomials
Programs
-
Maple
seq(add(add(add((-1)^(i+j)*binomial(n+1,i)*binomial(n+1,j)*binomial((m-i)*(m-j)+n-1,n),i=0..m),j=0..m),m=0..n+1), n=0..30); # Kevin Dilks, Jun 09 2015
-
Mathematica
Table[Sum[Sum[Sum[(-1)^(i+j)*Binomial[n+1,i]*Binomial[n+1,j]*Binomial[(m-i)*(m-j)+n-1,n],{i,0,m}],{j,0,m}],{m,0,n+1}],{n,0,10}] (* Kevin Dilks, Jun 09 2015 *)
Formula
a(n) = Sum_{m=0..n+1} Sum_{i=0..m} Sum_{j=0..m} (-1)^{i+j} binomial(n+1,i) binomial(n+1,j) binomial((m-i)*(m-j)+n-1,n). - Kevin Dilks, Jun 09 2015
a(n) ~ sqrt(3) * n! / sqrt(Pi*n). - Vaclav Kotesovec, Jun 10 2015
Extensions
a(15)-a(20) from Wouter Meeussen, Dec 27 2010
a(0)=1 prepended by Alois P. Heinz, Jun 10 2015
Comments