cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180457 Central term of nine successive primes whose average is a prime.

Original entry on oeis.org

491, 617, 757, 1489, 1787, 2141, 2143, 2269, 3529, 3571, 4723, 5563, 6337, 6451, 6659, 6961, 6991, 7741, 7873, 7907, 8821, 10141, 10267, 10657, 12911, 13399, 14629, 15299, 16189, 16451, 16487, 17027, 18223, 18701, 19801, 19843, 19853, 19937
Offset: 1

Views

Author

Carmine Suriano, Sep 06 2010

Keywords

Comments

The average value is not always the central term (see A096701).

Examples

			a(5)=1787 since (1753+1759+1777+1783+1787+1789+1801+1811+1823)/9=16083/9=1787 a prime.
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime,[seq(t,t=1..10^5,2)]):
    PSums:= ListTools[PartialSums](Primes):
    Avgs:= [seq((PSums[i+9]-PSums[i])/9, i=1..nops(PSums)-9)]:
    Pos:= select(t -> Avgs[t]::integer and isprime(Avgs[t]),[$1..nops(Avgs)]):
    seq(Primes[Pos[i]+5],i=1..nops(Pos)); # Robert Israel, Apr 26 2016
  • Mathematica
    Select[Partition[Prime[Range[2500]],9,1],PrimeQ[Mean[#]]&][[;;,5]] (* Harvey P. Dale, Nov 20 2024 *)

Formula

a(n)=[p(n-4)+p(n-3)+p(n-2)+p(n-1)+p(n)+p(n+1)+p(n+2)+p(n+3)+p(n+4)]/9.