A180473 Expansion of o.g.f. x*s(x)/(1-x*s(x)-x^2*s(x)^2), where s(x) is the o.g.f. of the little Schroeder numbers (A001003).
1, 2, 7, 27, 114, 509, 2365, 11318, 55411, 276231, 1397430, 7156089, 37023225, 193229466, 1016141199, 5378940051, 28638955098, 153267403397, 824014568581, 4448456379134, 24104579252971, 131055735586767, 714741620026542, 3908997981612017, 21434123083817329
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Programs
-
Maxima
a(n):=sum(k/(2^k*n)*sum(binomial(n,j)*2^(n-j)*(-1)^j*binomial(2*n-k-j-1,n-1),j,0,n-k)*fib(k),k,1,n);
-
PARI
seq(n)={my(p=x*(1+x-sqrt(1 - 6*x + x^2 + O(x*x^n)))/(4*x)); Vec(p/(1 - p - p^2))} \\ Andrew Howroyd, Apr 17 2021
Formula
a(n) = Sum_{k=1..n} (k/(2^k*n))*(Sum_{j=0..n-k} binomial(n,j)*2^(n-j)*(-1)^j*binomial(2*n-k-j-1, n-1))*Fibonacci(k).
Extensions
Terms a(21) and beyond from Andrew Howroyd, Apr 17 2021