cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180483 Expansion of (3+3*x-25*x^2-3*x^3+2*x^4)/((1-x)*(1-10*x^2+x^4)).

Original entry on oeis.org

3, 6, 11, 38, 87, 354, 839, 3482, 8283, 34446, 81971, 340958, 811407, 3375114, 8032079, 33410162, 79509363, 330726486, 787061531, 3273854678, 7791105927, 32407820274, 77123997719, 320804348042, 763448871243, 3175635660126, 7557364714691, 31435552253198
Offset: 0

Views

Author

Paul Weisenhorn, Jan 20 2011

Keywords

Comments

Previous name was: Solutions a(n) to (a(n)-2)*(a(n)-3) = 6*b(n)*(b(n)-1).
The associated b(n) are in A181442.
Consider an urn with r red and b blue balls. Draw 4 balls without replacement. The probability of picking 4 red balls is r/(r+b) *(r-1)/(r+b-1) *(r-2)/(r+b-2) * (r-3)/(r+b-3). The probability of picking 2 red and 2 blue balls is binomial(2,2) * r*(r-1)*b*(b-1)/ ((r+b)*(r+b-1)..*(r+b-3)). For equal probability we need (r-2)*(r-3)=6*b*(b-1). The current sequence shows the r, the number of red balls which allow such scenario of equal probability.
The quadratic equation is diagonalized with a(n) = (A(n) + 5)/2 and b(n) = (B(n) + 1)/2, equivalent to the Pell equation A(n)^2 - 6*B(n)^2 = -5 with the 2 fundamental solutions (1; 1); (7; 3) and the solution (5; 2) for the unit form.

Examples

			For n=3: a(3) = 38; b(3) = 15; binomial(38,4) = 73815 and  binomial(38, 2)*binomial(15, 2) = 73815.
The 2-tuples begin (3, 1); (6, 2); (11, 4); (38, 15).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3+3*x-25*x^2-3*x^3+2*x^4)/((1-x)*(1-10*x^2+x^4)) )); // G. C. Greubel, Apr 28 2022
    
  • Maple
    n:=0: for s from 1 to 100 do r:=(sqrt(24*s^2-24*s+1)+5)/2: if (r=trunc(r)) then a(n):=r: b(n):=s: n:=n+1: end if: end do:
  • Mathematica
    LinearRecurrence[{1,10,-10,-1,1},{3,6,11,38,87},30] (* Harvey P. Dale, Apr 28 2018 *)
  • SageMath
    def b(n): return (1/2)*(1+(-1)^n)*chebyshev_U(n//2, 5)
    def A180483(n): return (1/2)*(5 +b(n) +7*b(n-1) +7*b(n-2) +b(n-3))
    [A180483(n) for n in (0..40)] # G. C. Greubel, Apr 28 2022

Formula

G.f.: ( 3+3*x-25*x^2-3*x^3+2*x^4 )/( (1-x)*(1-10*x^2+x^4) ). - R. J. Mathar, Feb 05 2011
Let r=sqrt(6), s=5+2*r, and t=5-2*r, then a(2*n) = (10+(1+r)*s^n+(1-r)*t^n)/4 and a(2*n+1) = (10+(7+3*r)*s^n+(7-3*r)*t^n)/4.
a(n) = 11*a(n-2) - 11*a(n-4) + a(n-6).
a(n) = +a(n-1) +10*a(n-2) -10*a(n-3) -a(n-4) +a(n-5). - R. J. Mathar, Feb 05 2011
a(n) = (1/2)*(5 +b(n) +7*b(n-1) +7*b(n-2) +b(n-3)), where b(n) = (1/2)*(1+(-1)^n)*ChebyshevU(n/2, 5). - G. C. Greubel, Apr 28 2022

Extensions

New name using the g.f. by R. J. Mathar from Joerg Arndt, Apr 27 2022