cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A207832 Numbers x such that 20*x^2 + 1 is a perfect square.

Original entry on oeis.org

0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0

Views

Author

Gary Detlefs, Feb 20 2012

Keywords

Comments

Denote as {a,b,c,d} the second-order linear recurrence a(n) = c*a(n-1) + d*a(n-2) with initial terms a, b. The following sequences and recurrence formulas are related to integer solutions of k*x^2 + 1 = y^2.
.
k x y
- ----------------------- -----------------------
2 A001542 {0,2,6,-1} A001541 {1,3,6,-1}
3 A001353 {0,1,4,-1} A001075 {1,2,4,-1}
5 A060645 {0,4,18,-1} A023039 {1,9,18,-1}
6 A001078 {0,2,10,-1} A001079 {1,5,10,-1}
7 A001080 {0,3,16,-1} A001081 {1,8,16,-1}
8 A001109 {0,1,6,-1} A001541 {1,3,6,-1}
10 A084070 {0,1,38,-1} A078986 {1,19,38,-1}
11 A001084 {0,3,20,-1} A001085 {1,10,20,-1}
12 A011944 {0,2,14,-1} A011943 {1,7,14,-1}
13 A075871 {0,180,1298,-1} A114047 {1,649,1298,-1}
14 A068204 {0,4,30,-1} A069203 {1,15,30,-1}
15 A001090 {0,1,8,-1} A001091 {1,4,8,-1}
17 A121740 {0,8,66,-1} A099370 {1,33,66,-1}
18 A202299 {0,4,34,-1} A056771 {1,17,34,-1}
19 A174765 {0,39,340,-1} A114048 {1,179,340,-1}
20 a(n) {0,2,18,-1} A023039 {1,9,18,-1}
21 A174745 {0,12,110,-1} A114049 {1,55,110,-1}
22 A174766 {0,42,394,-1} A114050 {1,197,394,-1}
23 A174767 {0,5,48,-1} A114051 {1,24,48,-1}
24 A004189 {0,1,10,-1} A001079 {1,5,10,-1}
26 A174768 {0,10,102,-1} A099397 {1,51,102,-1}
The sequence of the c parameter is listed in A180495.

Crossrefs

Programs

  • Magma
    m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
    
  • Maple
    readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
  • Mathematica
    LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
    Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}]  (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */

Formula

a(n) = 18*a(n-1) - a(n-2).
From Bruno Berselli, Feb 21 2012: (Start)
G.f.: 2*x/(1-18*x+x^2).
a(n) = -a(-n) = 2*A049660(n) = ((2 + sqrt(5))^(2*n)-(2 - sqrt(5))^(2*n))/(4*sqrt(5)). (End)
a(n) = Fibonacci(6*n)/4. - Bruno Berselli, Jun 19 2019
For n>=1, a(n) = A079962(6n-3). - Christopher Hohl, Aug 22 2021

A341862 a(n) is the even term in the linear recurrence signature for numerators and denominators of continued fraction convergents to sqrt(n), or 0 if n is a square.

Original entry on oeis.org

0, 0, 2, 4, 0, 4, 10, 16, 6, 0, 6, 20, 14, 36, 30, 8, 0, 8, 34, 340, 18, 110, 394, 48, 10, 0, 10, 52, 254, 140, 22, 3040, 34, 46, 70, 12, 0, 12, 74, 50, 38, 64, 26, 6964, 398, 322, 48670, 96, 14, 0, 14, 100, 1298, 364, 970, 178, 30, 302, 198, 1060, 62, 59436
Offset: 0

Views

Author

Georg Fischer, Feb 22 2021

Keywords

Comments

The Everest et al. link states that "the continued fraction expansion of a quadratic irrational is eventually periodic, which implies that the numerators px and denominators qx of its convergents satisfy linear recurrence relations".
Let k be the period length minus one of the continued fraction of sqrt(n). Then the linear recurrence signatures with constant coefficients have the form (0, 0, ..., 0, a(n), 0, 0, ..., 0, (-1)^(n+1)), with k zeroes before and behind a(n).
a(n) is twice the numerator of the convergent to sqrt(n) with index k (starting with 0).
These properties result from the mirrored structure of the period of such continued fractions.
The sequence has remarkably many terms in common with A180495 and with 2*A033313.

Examples

			The numerators for sqrt(13) begin with 3, 4, 7, 11, 18, 119, ... (A041018) and have the signature (0,0,0,0,36,0,0,0,0,1). The continued fraction has period [1,1,1,1,6], so k=4 and a(13) = 2*A041018(4) = 2*18 = 36. The signature ends with (-1)^4.
The numerators for sqrt(19) begin with 4, 9, 13, 48, 61, 170, 1421, ... (A041028) and have the signature (0,0,0,0,0,340,0,0,0,0,0,-1). The continued fraction has period [2,1,3,1,2,8], so k=5 and a(19) = 2*A041028(5) = 2*170 = 340. The signature ends with (-1)^5.
		

Crossrefs

Formula

a(n) = 2*A006702(n) if n is not square, otherwise 0.

A378908 Square array, read by descending antidiagonals, where each row n comprises the integers w >= 1 such that A000037(n)*w^2+4 is a square.

Original entry on oeis.org

4, 24, 2, 140, 8, 1, 816, 30, 3, 4, 4756, 112, 8, 40, 6, 27720, 418, 21, 396, 96, 2, 161564, 1560, 55, 3920, 1530, 12, 12, 941664, 5822, 144, 38804, 24384, 70, 456, 6, 5488420, 21728, 377, 384120, 388614, 408, 17316, 120, 1, 31988856, 81090, 987, 3802396
Offset: 1

Views

Author

Charles L. Hohn, Dec 10 2024

Keywords

Comments

Also, integers w >= 1 for each row n >= 1 such that z+(1/z) is an integer, where x = A000037(n), y = w*sqrt(x), and z = (y+ceiling(y))/2.
All terms of row n are positive integer multiples of T(n, 1).
Limit_{k->oo} T(n, k+1)/T(n, k) = (sqrt(b^2-4)+b)/2 where b=T(n, 2)/T(n, 1).

Examples

			n=row index; x=nonsquare integer of index n (A000037(n)):
 n  x    T(n, k)
------+---------------------------------------------------------------------
 1  2 |  4,   24,   140,     816,      4756,       27720,        161564, ...
 2  3 |  2,    8,    30,     112,       418,        1560,          5822, ...
 3  5 |  1,    3,     8,      21,        55,         144,           377, ...
 4  6 |  4,   40,   396,    3920,     38804,      384120,       3802396, ...
 5  7 |  6,   96,  1530,   24384,    388614,     6193440,      98706426, ...
 6  8 |  2,   12,    70,     408,      2378,       13860,         80782, ...
 7 10 | 12,  456, 17316,  657552,  24969660,   948189528,   36006232404, ...
 8 11 |  6,  120,  2394,   47760,    952806,    19008360,     379214394, ...
 9 12 |  1,    4,    15,      56,       209,         780,          2911, ...
10 13 |  3,   33,   360,    3927,     42837,      467280,       5097243, ...
11 14 |  8,  240,  7192,  215520,   6458408,   193536720,    5799643192, ...
12 15 |  2,   16,   126,     992,      7810,       61488,        484094, ...
13 17 | 16, 1056, 69680, 4597824, 303386704, 20018924640, 1320945639536, ...
14 18 |  8,  272,  9240,  313888,  10662952,   362226480,   12305037368, ...
...
		

Crossrefs

Programs

  • PARI
    row(n)={my(v=List()); for(t=3, oo, if((t^2-4)%x>0 || !issquare((t^2-4)/x), next); listput(v, sqrtint((t^2-4)/x)); break); listput(v, v[1]*sqrtint(v[1]^2*x+4)); while(#v<10, listput(v, v[#v]*(v[2]/v[1])-v[#v-1])); Vec(v)}
    for(n=1, 20, x=n+floor(1/2+sqrt(n)); print (n, " ", x, " ", row(n)))

Formula

For x = A000037(n) (nonsquare integer of index n):
If x is not the sum of 2 squares, then T(n, 1) = A048942(n); otherwise, T(n, 1) is a positive integer multiple of A048942(n).
For j in {-2, 1, 2, 4}, if x-j is a square (except 2-2=0^2 or 5-1=2^2), then T(n, 1) = (4/abs(j))*sqrt(x-j) and T(n, 2) = T(n, 1)^3/(4/abs(j)) + sign(j)*2*T(n, 1).
For j in {1, 4}, if x+j is a square, then T(n, 1) = 2/sqrt(4/j) and T(n, 2) = (4/j)*sqrt(x+j).
For k >= 2, T(n, k) = T(n, k-1)*sqrt(T(n, 1)^2*x+4) - [k>=3]*T(n, k-2).
T(n, 2) = Sum_{i=0..oo}(T(n, 1)^(2-2*i) * x^((1-2*i)/2) * A002420(i) * A033999(i)).
If T(n, 1) is even, then T(n, 2) = T(n, 1)*A180495(n); if T(n, 1) is odd and x is even, then T(n, 2) = T(n, 1)*sqrt(A180495(n)+2); if T(n, 1) and x are both odd, then T(n, 2) is a factor of T(n, 1)*A180495(n).
For k >= 3, T(n, k) = T(n, k-1)*(T(n, 2)/T(n, 1)) - T(n, k-2) = T(n, 1)*A298675(T(n, 2)/T(n, 1), k-1) + T(n, k-2) = sqrt((A298675(T(n, 2)/T(n, 1), k)^2-4)/x).
Showing 1-3 of 3 results.