cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180507 Numbers k such that k^2 + 1 = p*q, p and q prime with p == q (mod k).

Original entry on oeis.org

3, 8, 12, 144, 1020, 8040, 13860, 34840, 729180, 1728240, 3232060, 17576520, 39279240, 85184880, 117649980, 778689840, 884737920, 1225045140, 1771563420, 3723878100, 3869896140, 4574299320, 7762395960, 12487172640, 14348911860, 14886940920, 21484957560, 24137574780
Offset: 1

Views

Author

Michel Lagneau, Jan 20 2011

Keywords

Comments

q - p = k with k = 3, 8, 144.
The next terms with q - p = k are F(432) = 85738...5984 and F(570) where F(n) is the n-th Fibonacci number. All such terms are in A001906; the next such term, if one exists, has more than 25000 decimal digits. - Charles R Greathouse IV, Jan 21 2011

Examples

			a(3) = 12 because 12^2 + 1 = 5*29 and 29 - 5 = 2*12;
a(8) = 34840 because 34840^2 + 1 = 4289 * 283009 and 283009 - 4289 = 278720 = 8*34840.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for k from 1 to 40000 do: x:=k^2+1:y:=factorset(x):yy:=bigomega(x):if
      yy=2 and irem(y[2],k) =y[1] then printf(`%d, `,k):else fi:od:
  • PARI
    w(m, r) = Vec(x*(1-x)/(1-(m^2+2)*x+x^2) + O(x^r));
    isok(s, t) = isprime(s) && isprime(s+t);
    lista(nn) = {my(g, k, m=1, r, u=w(1, nn), v=List([])); for(i=2, r=#u, g=k=(u[i]+sqrtint(5*u[i]^2-4))/2; if(isok(u[i], k), listput(v, k))); while(r>2, u=w(m++, r); for(i=2, #u, k=(m*u[i]+sqrtint((m^2+4)*u[i]^2-4))/2; if(kJinyuan Wang, Mar 29 2020

Extensions

More terms from Charles R Greathouse IV, Jan 24 2011
Missing terms inserted and more terms from Jinyuan Wang, Mar 30 2020