A180507 Numbers k such that k^2 + 1 = p*q, p and q prime with p == q (mod k).
3, 8, 12, 144, 1020, 8040, 13860, 34840, 729180, 1728240, 3232060, 17576520, 39279240, 85184880, 117649980, 778689840, 884737920, 1225045140, 1771563420, 3723878100, 3869896140, 4574299320, 7762395960, 12487172640, 14348911860, 14886940920, 21484957560, 24137574780
Offset: 1
Keywords
Examples
a(3) = 12 because 12^2 + 1 = 5*29 and 29 - 5 = 2*12; a(8) = 34840 because 34840^2 + 1 = 4289 * 283009 and 283009 - 4289 = 278720 = 8*34840.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):for k from 1 to 40000 do: x:=k^2+1:y:=factorset(x):yy:=bigomega(x):if yy=2 and irem(y[2],k) =y[1] then printf(`%d, `,k):else fi:od:
-
PARI
w(m, r) = Vec(x*(1-x)/(1-(m^2+2)*x+x^2) + O(x^r)); isok(s, t) = isprime(s) && isprime(s+t); lista(nn) = {my(g, k, m=1, r, u=w(1, nn), v=List([])); for(i=2, r=#u, g=k=(u[i]+sqrtint(5*u[i]^2-4))/2; if(isok(u[i], k), listput(v, k))); while(r>2, u=w(m++, r); for(i=2, #u, k=(m*u[i]+sqrtint((m^2+4)*u[i]^2-4))/2; if(k
Jinyuan Wang, Mar 29 2020
Extensions
More terms from Charles R Greathouse IV, Jan 24 2011
Missing terms inserted and more terms from Jinyuan Wang, Mar 30 2020
Comments