cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180574 Wiener index of the n-sunlet graph.

Original entry on oeis.org

27, 60, 105, 174, 259, 376, 513, 690, 891, 1140, 1417, 1750, 2115, 2544, 3009, 3546, 4123, 4780, 5481, 6270, 7107, 8040, 9025, 10114, 11259, 12516, 13833, 15270, 16771, 18400, 20097, 21930, 23835, 25884, 28009, 30286, 32643, 35160, 37761, 40530
Offset: 3

Views

Author

Emeric Deutsch, Sep 19 2010

Keywords

Crossrefs

Cf. A180573.

Programs

  • Maple
    a := proc (n) if `mod`(n, 2) = 0 then (1/2)*n*(n^2+4*n-2) else (1/2)*n*(n^2+4*n-3) end if end proc: seq(a(n), n = 3 .. 45);
  • Mathematica
    Table[n (-5 + (-1)^n + 2 n (4 + n))/4, {n, 3, 20}]
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {27, 60, 105, 174, 259, 376}, 20]
    CoefficientList[Series[(27 + 6 x - 42 x^2 + 12 x^3 + 19 x^4 - 10 x^5)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x]

Formula

a(n) = Sum(A180573(n,k),k>=1).
a(n) = n(n^2+4n-2)/2 if n is even; a(n) = n(n^2+4n-3)/2 if n is odd.
a(n) = n*(-5+(-1)^n+8*n+2*n^2)/4. - Colin Barker, Oct 31 2012
G.f.: -x^3*(5*x^2-2*x-9)*(2*x^3-3*x^2+3)/((x-1)^4*(x+1)^2). - Colin Barker, Oct 31 2012
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6). - Eric W. Weisstein, Sep 07 2017