A180576 Wiener index of the n-web graph.
4, 27, 69, 148, 255, 417, 616, 888, 1206, 1615, 2079, 2652, 3289, 4053, 4890, 5872, 6936, 8163, 9481, 10980, 12579, 14377, 16284, 18408, 20650, 23127, 25731, 28588, 31581, 34845, 38254, 41952, 45804, 49963, 54285, 58932, 63751, 68913, 74256, 79960
Offset: 1
Links
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
- Eric Weisstein's World of Mathematics, Web Graph
- Eric Weisstein's World of Mathematics, Wiener Index
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Cf. A180575.
Programs
-
Maple
a := proc (n) if `mod`(n, 2) = 1 then (1/8)*n*(9*n^2+40*n-17) else (1/8)*n*(9*n^2+40*n-8) end if end proc: seq(a(n), n = 3 .. 45);
-
Mathematica
Table[n (-25 + 9 (-1)^n + 2 n (40 + 9 n))/16, {n, 20}] (* Eric W. Weisstein, Sep 08 2017 *) LinearRecurrence[{2, 1, -4, 1, 2, -1}, {4, 27, 69, 148, 255, 4178}, 20] (* Eric W. Weisstein, Sep 08 2017 *) CoefficientList[Series[(4 + 19 x + 11 x^2 - x^3 - 6 x^4 + 3761 x^5)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
Formula
a(2n) = n*(9*n^2+20*n-2); a(2n+1) = (2*n+1)*(9*n^2+29*n+8)/2.
G.f.: -x^3*(27*x^5-50*x^4-35*x^3+110*x^2-10*x-69)/((x-1)^4*(x+1)^2). - Colin Barker, Oct 31 2012
a(n) = n*(2*n*(9*n+40)+9*(-1)^n-25)/16. - Bruno Berselli, Oct 31 2012
Extensions
a(1)-a(2) from Eric W. Weisstein, Sep 08 2017
Comments