cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180576 Wiener index of the n-web graph.

Original entry on oeis.org

4, 27, 69, 148, 255, 417, 616, 888, 1206, 1615, 2079, 2652, 3289, 4053, 4890, 5872, 6936, 8163, 9481, 10980, 12579, 14377, 16284, 18408, 20650, 23127, 25731, 28588, 31581, 34845, 38254, 41952, 45804, 49963, 54285, 58932, 63751, 68913, 74256, 79960
Offset: 1

Views

Author

Emeric Deutsch, Sep 19 2010

Keywords

Comments

The n-web graph is the stacked prism graph C_n X P_3 with the edges of the outer cycle removed.
Equivalently, the n-web graph is obtained by attaching a pendant edge to each node of the outer cycle of the circular ladder (prism) C_n X P_2.
The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
a(n) = sum(A180575(n,k), k>=1).
Sequence extended to a(1)-a(2) using the formula/recurrence. - Eric W. Weisstein, Sep 08 2017

Crossrefs

Cf. A180575.

Programs

  • Maple
    a := proc (n) if `mod`(n, 2) = 1 then (1/8)*n*(9*n^2+40*n-17) else (1/8)*n*(9*n^2+40*n-8) end if end proc: seq(a(n), n = 3 .. 45);
  • Mathematica
    Table[n (-25 + 9 (-1)^n + 2 n (40 + 9 n))/16, {n, 20}] (* Eric W. Weisstein, Sep 08 2017 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {4, 27, 69, 148, 255, 4178}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
    CoefficientList[Series[(4 + 19 x + 11 x^2 - x^3 - 6 x^4 + 3761 x^5)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)

Formula

a(2n) = n*(9*n^2+20*n-2); a(2n+1) = (2*n+1)*(9*n^2+29*n+8)/2.
G.f.: -x^3*(27*x^5-50*x^4-35*x^3+110*x^2-10*x-69)/((x-1)^4*(x+1)^2). - Colin Barker, Oct 31 2012
a(n) = n*(2*n*(9*n+40)+9*(-1)^n-25)/16. - Bruno Berselli, Oct 31 2012

Extensions

a(1)-a(2) from Eric W. Weisstein, Sep 08 2017