A180663 Mirror image of the Golden Triangle: T(n,k) = A001654(n-k) for n>=0 and 0<=k<=n.
0, 1, 0, 2, 1, 0, 6, 2, 1, 0, 15, 6, 2, 1, 0, 40, 15, 6, 2, 1, 0, 104, 40, 15, 6, 2, 1, 0, 273, 104, 40, 15, 6, 2, 1, 0, 714, 273, 104, 40, 15, 6, 2, 1, 0, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0, 4895, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0
Offset: 0
Examples
The first few rows of this triangle are: 0; 1, 0; 2, 1, 0; 6, 2, 1, 0; 15, 6, 2, 1, 0; 40, 15, 6, 2, 1, 0;
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
Crossrefs
Programs
-
Haskell
a180663 n k = a180663_tabl !! n !! k a180663_row n = a180663_tabl !! n a180663_tabl = map reverse a180662_tabl -- Reinhard Zumkeller, Jun 08 2013
-
Maple
F:= combinat[fibonacci]: T:= (n, k)-> F(n-k)*F(n-k+1): seq(seq(T(n,k), k=0..n), n=0..10); # revised Johannes W. Meijer, Sep 13 2012
-
Mathematica
Module[{nn=20,fb},fb=Times@@@Partition[Fibonacci[Range[0,(nn(nn+1))/2]],2,1];Table[ Reverse[Take[fb,n]],{n,nn}]]//Flatten (* Harvey P. Dale, Jan 30 2023 *)
Formula
T(n,k) = F(n-k)*F(n-k+1) with F(n) = A000045(n), for n>=0 and 0<=k<=n.
Comments