cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180736 a(n) = [r]*[2r]*...[nr], where r=sqrt(2) and []=floor.

Original entry on oeis.org

1, 2, 8, 40, 280, 2240, 20160, 221760, 2661120, 37255680, 558835200, 8941363200, 160944537600, 3057946214400, 64216870502400, 1412771151052800, 33906507625267200, 847662690631680000, 22039229956423680000, 617098438779863040000, 17895854724616028160000, 554771496463096872960000
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Examples

			a(n) = 1*2*4*5*7*...*floor(n*sqrt(2)).
		

Crossrefs

Programs

  • Magma
    [(&*[Floor(j*Sqrt(2)): j in [1..n]]): n in [1..25]]; // G. C. Greubel, Sep 29 2018
  • Maple
    r:=sqrt(2): seq(mul(floor(k*r),k=1..n),n=1..25); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    Table[Product[Floor[i*Sqrt[2]], {i, n}], {n, 1, 25}] (* modified by G. C. Greubel, Sep 29 2018 *)
  • PARI
    for(n=1,25, print1(prod(j=1,n, floor(j*sqrt(2))), ", ")) \\ G. C. Greubel, Sep 29 2018
    

Formula

a(n) = [r]*[2r]*...[nr], where r=sqrt(2) and []=floor.
a(n) ~ c * 2^(n/2) * n! / n^(1/(2*sqrt(2))), where c = 0.71779404... - Vaclav Kotesovec, Oct 02 2018