A180750 a(n) = DP(n) is the total number of k-double-palindromes of n, where 2 <= k <= n.
0, 1, 3, 6, 13, 21, 43, 68, 116, 185, 311, 464, 757, 1157, 1741, 2720, 4081, 6214, 9199, 14078, 20353, 31405, 45035, 68930, 98224, 150761, 212706, 326362, 458725, 702209, 983011, 1504400, 2096441, 3207137, 4456139, 6808172, 9437149, 14408669, 19921297, 30393800
Offset: 1
References
- John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010.
Crossrefs
Formula
G.f.: Sum_{n>=1} phi^{(-1)}(n)*f(x^n) - Sum_{n>=1} mu(n)*g(x^n), where phi^{(-1)}(n) = A023900(n) is the Dirichlet inverse of Euler's totient function, mu(n) = A008683(n) is the Mobius function, f(x) = x*(x+1)*(2*x+1)/(1-2*x^2)^2, and g(x) = x*(1+2*x)/(1-2*x^2). - Petros Hadjicostas, Nov 06 2017
Extensions
a(11)-a(18) from Donovan Johnson, Oct 22 2010
a(11)-a(18) corrected by and a(19)-a(40) from Petros Hadjicostas and Andrew Howroyd, Nov 03 2017
Comments