A180868 Numbers n such that n and n+1 are semiprime powers.
9, 14, 15, 21, 25, 33, 34, 35, 38, 57, 64, 81, 85, 86, 93, 94, 118, 121, 122, 133, 141, 142, 145, 158, 177, 201, 202, 205, 213, 214, 215, 216, 217, 218, 225, 253, 298, 301, 302, 326, 334, 361, 381, 393, 394, 445, 446, 453, 481, 484, 501
Offset: 1
Examples
15 is in the sequence because 15 = (3*5)^1 and 15+1 = 16 = (2*2)^2 are both semiprime powers.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
spp:= proc(n) option remember; local l; if n<2 or isprime(n) then false else l:= ifactors(n)[2]; if nops(l)>2 then false elif nops(l)=2 then evalb(l[1][2]=l[2][2]) else evalb(irem(l[1][2], 2)=0) fi fi end: a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, 8, a(n-1)) while not spp(k) or not spp(k+1) do od; k end: seq(a(n), n=1..80); # Alois P. Heinz, Jan 22 2011
-
Mathematica
sppQ[n_] := With[{f = FactorInteger[n][[All, 2]]}, n==1 || Length[f]==1 && EvenQ[f[[1]]] || Length[f]==2 && f[[1]]==f[[2]]]; Select[Range[1000], sppQ[#] && sppQ[#+1]&] (* Jean-François Alcover, Nov 21 2020 *)
Extensions
More terms and edited by Alois P. Heinz, Jan 22 2011
Comments