cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180916 Number of convex polyhedra with n faces that are all regular polygons.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 2, 7, 3, 6, 4, 7, 3, 13, 2, 5, 4, 6, 1, 9, 2, 6, 1, 4, 1, 8, 4, 2, 1, 3, 1, 10, 1, 3, 1, 2, 4, 3, 1, 2, 1, 9, 1, 2, 1, 2, 2, 2, 1, 2, 1, 9, 1, 2, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

J. Lowell, Sep 23 2010

Keywords

Comments

For all n > 92, the sequence is identical to A000034 because for large n only prisms (even and odd n) and antiprisms (even n) are convex and have regular polygonal faces. The MathWorld article about Johnson Solids is very informative about this topic.
In a regular-faced polyhedron, any two faces with the same number of edges are congruent. (Proof: As the two faces are regular polygons, it suffices to show their edges have the same length. But as all faces are regular polygons and the polyhedron is connected, all edges have the same length.) - Jonathan Sondow, Feb 11 2018

Examples

			a(6) = 3 because the cube, pentagonal pyramid, and triangular bipyramid all qualify. a(7) = 2 because only the pentagonal prism and elongated triangular pyramid qualify; the hexagonal pyramid is impossible with equilateral triangles
		

Crossrefs

Programs

  • Mathematica
    f = Tally[Join[PolyhedronData["Platonic", "FaceCount"], PolyhedronData["Archimedean", "FaceCount"], PolyhedronData["Johnson", "FaceCount"], {PolyhedronData[{"Prism", 3}, "FaceCount"]}]]; f2 = Transpose[f]; cnt = Table[0, {n, 100}]; cnt[[f2[[1]]]] = f2[[2]]; Do[cnt[[n]]++, {n, 7, 100}] (* add prisms *); Do[ cnt[[n]]++, {n, 10, 100, 2}] (* add antiprisms *); cnt (* T. D. Noe, Mar 04 2011 *)

Formula

a(A296602(n)) = 1. - Jonathan Sondow, Jan 29 2018

Extensions

More terms from J. Lowell, Feb 28 2011
Corrected by T. D. Noe, Mar 04 2011