A180943 Odd composite numbers m for which 12*|A000367((m+1)/2)|==(-1)^{(m-1)/ 2}* A002445((m+1)/2) (mod m).
33, 169, 481, 561, 793, 805, 949, 1105, 1261, 1417, 1645, 1729, 2041, 2353, 2465, 2509, 2821, 2977, 3133, 3421, 3445, 3601, 4069, 4123, 4381, 4537, 4849, 5161, 5317, 5473, 5629, 5941, 6061, 6205, 6601, 7033, 7093, 7189, 7501, 7813, 7885, 7969, 8113
Offset: 1
Keywords
Links
- V. Shevelev, B-pseudoprimes, seqfan list, Sep 04 2010
- Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1. [_N. J. A. Sloane_, Feb 07 2013]
Programs
-
Maple
A000367 := proc(n) numer(bernoulli(2*n)) ; end proc: A002445 := proc(n) denom(bernoulli(2*n)) ; end proc: isA180943 := proc(m) if type(m,'odd') and not isprime(m) then 12*abs(A000367((m+1)/2)) mod m = (-1)^((m-1)/2)*A002445((m+1)/2) mod m ; else false; end if; end proc: A180943 := proc(n) option remember; if n = 1 then 33; else for a from procname(n-1)+2 by 2 do if isA180943(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Oct 24 2010
-
Mathematica
nb[n_] := Numerator[BernoulliB[2n]]; db[n_] := Denominator[BernoulliB[2n]]; okQ[m_] := CompositeQ[m] && Mod[12*Abs[nb[(m+1)/2]], m] == Mod[(-1)^((m-1)/2)*db[(m+1)/2], m]; Select[Range[33, 9999, 2], okQ] (* Jean-François Alcover, Feb 28 2024 *)
Extensions
Comments rephrased and program added by R. J. Mathar, Oct 24 2010
Typo in data fixed by Jean-François Alcover, Feb 28 2024
Comments