cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A180945 Primes of the form prime(i)*prime(i+1) + prime(i+2) + 1.

Original entry on oeis.org

23, 47, 241, 347, 467, 937, 1811, 2551, 4159, 4831, 5851, 9901, 11131, 11777, 25759, 37061, 53597, 78121, 79817, 83227, 90263, 95791, 145547, 164429, 171793, 245513, 305243, 314161, 325477, 372709, 391231, 436273, 485101, 497729, 569269, 609149
Offset: 1

Views

Author

Carmine Suriano, Sep 27 2010

Keywords

Examples

			a(7) = 1811 = 41*43 + 47 + 1.
		

Crossrefs

Programs

  • Mathematica
    Select[#[[1]]*#[[2]]+#[[3]]+1&/@Partition[Prime[Range[150]],3,1],PrimeQ] (* Harvey P. Dale, Oct 19 2012 *)

A180946 Primes p such that p(i)*p(i+1)+p(i+2)+p(i+3) is a prime.

Original entry on oeis.org

5, 7, 11, 13, 29, 31, 37, 61, 67, 73, 89, 97, 103, 107, 139, 157, 167, 179, 181, 193, 233, 283, 349, 367, 409, 433, 569, 587, 599, 607, 619, 691, 743, 761, 769, 809, 823, 1021, 1039, 1051, 1151, 1201, 1291, 1319, 1361, 1373, 1399, 1481, 1483, 1499, 1549, 1567
Offset: 1

Views

Author

Carmine Suriano, Sep 27 2010

Keywords

Comments

There are twin primes in the sequence: e.g (29,31); (179,181); (1481,1483).
There are consecutive primes also: e.g. (29,31,37); (1663,1667); (1777,1783).

Examples

			a(5)=29 since 29*31+37+41=977 is a prime.
		

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[260]],4,1],PrimeQ[#[[1]]#[[2]]+ #[[3]]+ #[[4]]]&]][[1]] (* Harvey P. Dale, Jan 01 2012 *)

Extensions

Inserted 1021 to 1201 - R. J. Mathar, Oct 23 2010

A180947 Primes of the form p(i)*p(i+1)+p(i+2)+p(i+3) where p(i) is a prime.

Original entry on oeis.org

59, 107, 179, 263, 977, 1231, 1607, 4231, 4909, 5939, 8837, 10007, 11243, 11903, 21019, 25931, 29251, 32783, 34961, 38431, 56179, 83537, 123923, 137653, 172223, 190979, 326063, 349291, 361219, 373327, 391873, 485819, 559511, 586769, 596021
Offset: 1

Views

Author

Carmine Suriano, Sep 27 2010

Keywords

Examples

			a(7)=1607=37*41+43+47
		

Crossrefs

Programs

  • Mathematica
    Select[#[[1]]#[[2]]+#[[3]]+#[[4]]&/@ Partition[Prime[Range[200]],4,1], PrimeQ] (* Harvey P. Dale, Aug 24 2014 *)

A356626 Position of A332979(n) in the Doudna sequence A005940.

Original entry on oeis.org

1, 2, 4, 7, 15, 29, 61, 125, 249, 497, 1009, 2033, 4081, 8177, 16369, 32753, 65521, 131057, 262081, 524225, 1048513, 2097089, 4194241, 8388545, 16777153, 33553921, 67108353, 134217217, 268434945, 536870401, 1073741313, 2147483137, 4294966785, 8589934081, 17179868673
Offset: 0

Views

Author

Michael De Vlieger, Aug 24 2022

Keywords

Comments

Offset to match A332979.
Let n_2 be the binary expansion of n with a length of b bits. Let W(n) = A000120(n) the binary weight of n, i.e., the number of ones in n_2, while Z(n) = b - W(n) be the number of zeros in n_2. Let Q be the number of runs of ones in n_2, L(k) be the run length of the k-th least significant run of ones, and P(k) the partial sum of the number of zeros to the right of the k-th run of ones.
Define the Doudna function f(n) = Product_{k=1..Q} prime(P(k)+1)^L(k). The Doudna sequence A005940(n) = s(n) = f(n-1) with s(1) = 1.
Theorem 1: the maximum of s(n) for n = 2^(k-1)+1..2^k is a prime power.
Proof. s(n) corresponds to f(m), m = n-1, hence m = 2^(k-1)..2^k. The number m in this domain has k bits. Binary numbers involve zeros and ones, thus, k = W(m) + Z(m). It is clear that W(m) = Omega(f(m)) and Z(m) = pi(gpf(f(m)))-1. Hence we have k = Omega(f(m)) + pi(gpf(f(m)))-1. We maximize f(m) for a k-bit number m when the greatest prime factor of f(m) has maximum multiplicity, therefore the maximum of s(n) for n = 2^(k-1)+1..2^k is a prime power.
Theorem 2: s(2^k-2^j+1) = prime(j+1)^(k-j), j=1..k-1.
Proof: We write (2^k-2^j)_2 as (k-j) ones followed by j zeros, a k-bit binary number. We have Q=1 run of ones in (2^k-2^j)_2. Therefore f(2^k-2^j) = prime(P(1)+1)^L(1) = prime(j+1)^(k-j), that is, row k of A180944.
The maximum of s(n) for n = 2^(k-1)+1..2^k is tantamount to the maximum of row k of A180944.

Examples

			A332979(3) = 9 = 3^2, therefore a(3) = 2^3-2^(pi(3)-1)+1 = 2^3-2^1+1 = 8-2+1 = 7.
A332979(8) = 16807 = 7^5, therefore a(8) = 2^8-2^(pi(7)-1)+1 = 2^8-2^3+1 = 249.
		

Crossrefs

Programs

  • Mathematica
    {1}~Join~Table[2^n - 2^(# - 1) + 1 &[FirstPosition[#, Max[#]][[1]]] &@ Thread[Power[Prime[#], Reverse[#] ] ] &@ Range[n], {n, 34}]

Formula

a(0) = 1; a(n) = 2^n - 2^(pi(p)-1) + 1 for A332979(n) = p^e and n>1.

A356627 Primes whose powers appear in A332979.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 29, 37, 41, 59, 67, 71, 97, 127, 149, 191, 223, 269, 307, 347, 419, 431, 557, 563, 569, 587, 593, 599, 641, 727, 809, 937, 967, 1009, 1213, 1277, 1423, 1861, 1973, 2237, 2267, 2657, 3163, 3299, 3449, 3457, 3527, 3907, 4001, 4211, 4441, 4637
Offset: 1

Views

Author

Michael De Vlieger, Sep 27 2022

Keywords

Comments

Maxima of row n > 0 of A005940, A182944, and A182945 are powers of these primes.
Indices k of primes, A000040(k), listed here show an interesting correlation with the function f(k) = A000040(k) - A302334(k). - Peter Munn, Sep 29 2022

Examples

			5 | A332979(5..7), thus 5 is in the sequence.
7 | A332979(8), thus 7 is in the sequence.
13 does not divide any term in A332979, so it is not a term in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Prime@ Union@ Table[MaximalBy[Table[{k, n - k}, {k, n}], Prime[#1]^#2 & @@ # &][[1, 1]], {n, 2^10}]
    (* or use concise file in A332979 *)
    Prime /@ Union@ Rest@ Map[ToExpression@ StringTrim[#, "p"] & @@ StringSplit[#, "^"] &, Import["https://oeis.org/A332979/a332979.txt", "Data"][[All, -1]]]
Showing 1-5 of 5 results.