cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A180970 Number of tatami tilings of a 3 X n grid (with monomers allowed).

Original entry on oeis.org

1, 3, 13, 22, 44, 90, 196, 406, 852, 1778, 3740, 7822, 16404, 34346, 72004, 150822, 316076, 662186, 1387596, 2907262, 6091780, 12763778, 26744268, 56036566, 117413804, 246015450, 515476036, 1080072022, 2263070868, 4741795442
Offset: 0

Views

Author

Frank Ruskey, Sep 29 2010

Keywords

Comments

A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point.

Examples

			Below we show the a(2) = 13 tatami tilings of a 2 X 3 rectangle where v = square of a vertical dimer, h = square of a horizontal dimer, m = monomer:
hh hh hh hh hh hh vv vm vm mm mv mv mm
hh vv mv vm mm hh vv vv vm hh vv mv hh
hh vv mv vm hh mm hh mv hh hh vm hh mm
		

References

  • A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.

Crossrefs

Cf. A180965 (2 X n grid), A192090 (4 X n grid), row sums of A272472.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1 +2*x +8*x^2 +3*x^3 -6*x^4 -3*x^5 -4*x^6 +2*x^7 +x^8)/(1 -x -2*x^2 -2*x^4 +x^5 +x^6) )); // G. C. Greubel, Apr 05 2021
    
  • Mathematica
    Join[{1,3,13}, LinearRecurrence[{1,2,0,2,-1,-1}, {22,44,90,196,406,852}, 37]] (* Jean-François Alcover, Jan 29 2019 *)
  • Sage
    def A180970_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1 +2*x +8*x^2 +3*x^3 -6*x^4 -3*x^5 -4*x^6 +2*x^7 +x^8)/(1 -x -2*x^2 -2*x^4 +x^5 +x^6) ).list()
    A180970_list(40) # G. C. Greubel, Apr 05 2021

Formula

G.f.: (1 + 2*x + 8*x^2 + 3*x^3 - 6*x^4 - 3*x^5 - 4*x^6 + 2*x^7 + x^8)/(1 - x - 2*x^2 - 2*x^4 + x^5 + x^6).

A272471 Triangle T(n,m) by rows: The number of tatami tilings of a 2 X n grid with dimers and 2*m monomers.

Original entry on oeis.org

1, 1, 2, 4, 3, 9, 1, 4, 18, 7, 6, 35, 26, 1, 9, 64, 73, 10, 13, 112, 179, 52, 1, 19, 192, 403, 194, 13, 28, 323, 850, 597, 87, 1, 41, 534, 1707, 1624, 408, 16, 60, 872, 3303, 4046, 1532, 131, 1, 88, 1410, 6203, 9428, 4951, 742, 19, 129, 2260, 11366, 20847, 14361, 3308
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2016

Keywords

Examples

			The triangle starts in row n=1 as:
1,1;
2,4;
3,9,1;
4,18,7;
6,35,26,1;
9,64,73,10;
13,112,179,52,1;
19,192,403,194,13;
28,323,850,597,87,1;
41,534,1707,1624,408,16;
60,872,3303,4046,1532,131,1;
88,1410,6203,9428,4951,742,19;
129,2260,11366,20847,14361,3308,184;
189,3596,20407,44194,38369,12472,1223,22;
277,5687,36018,90492,96071,41559,6330,246,1;
406,8946,62648,179982,228224,125942,27382,1878,25;
595,14007,107602,349244,519071,353929,103504,11084,317,1;
872,21842,182800,663470,1138094,935298,352234,54226,2734,28;
1278,33937,307581,1237436,2418496,2348345,1101887,229886,18137,397,1;
1873,52560,513165,2271066,5002459,5646544,3216889,870490,99142,3818,31;
2745,81168,849726,4109303,10106351,13082702,8864264,3008357,466676,28137,486,1;
4023,125022,1397565,7342252,19999147,29352862,23256181,9640660,1949989,170104,5157,34;
5896,192117,2284716,12971722,38856275,64030031,58492346,28994720,7393154,881310,41813,584,1;
8641,294588,3714618,22686720,74268850,136248856,141811450,82607092,25852870,4033500,277165,6778,37;
		

Crossrefs

Cf. A180965 (row sums), A000930 (column m=0), A046741 (without tatami condition).

Programs

  • Mathematica
    Select[Flatten[CoefficientList[CoefficientList[Series[x*(y^2 + 2*x*y^2 + x^2*y^2 + 1 - x^3)/(x^4 - x^3*y^2 - x^3 - x^2*y^2 + x^2 - 2*x + 1), {x, 0, 10}, {y, 0, 10}], x], y]], # != 0 &] (* G. C. Greubel, Apr 28 2017 *)

Formula

G.f. x*(y^2 +2*x*y^2 +x^2*y^2 +1 -x^3)/(x^4 -x^3*y^2 -x^3 -x^2*y^2 +x^2 -2*x +1). - R. J. Mathar, May 01 2016
Showing 1-2 of 2 results.