cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068921 Number of ways to tile a 2 X n room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961
Offset: 0

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068927 for incongruent tilings, A068920 for more info.
Cf. A000930, A078012, first column of A272471.

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 1}, {1, 1, 2}, 42] (* Robert G. Wilson v, Jul 12 2014 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+x^2)/(1-x-x^3)) \\ G. C. Greubel, Apr 26 2017

Formula

For n >= 3, a(n) = a(n-1) + a(n-3).
a(n) = A000930(n+1).
From Frank Ruskey, Jun 07 2009: (Start)
G.f.: (1+x^2)/(1-x-x^3).
a(n) = Sum_{j=0..floor(n/2)} binomial(n-2j+1, j). (End)
G.f.: Q(0)*( 1+x^2 )/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013

A272472 Triangle T(n,m) by rows: The number of tatami tilings of a 3 by n grid with dimers and m monomers.

Original entry on oeis.org

0, 2, 0, 1, 3, 0, 9, 0, 1, 0, 10, 0, 12, 4, 0, 27, 0, 13, 0, 18, 0, 56, 0, 16, 6, 0, 75, 0, 97, 0, 18, 0, 38, 0, 198, 0, 152, 0, 18, 10, 0, 177, 0, 433, 0, 214, 0, 18, 0, 72, 0, 570, 0, 836, 0, 282, 0, 18, 16, 0, 393, 0, 1517, 0, 1442, 0, 354, 0, 18, 0, 136
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2016

Keywords

Examples

			The triangle starts in row n=1 and column m=0 as:
0,2,0,1;
3,0,9,0,1;
0,10,0,12;
4,0,27,0,13;
0,18,0,56,0,16;
6,0,75,0,97,0,18;
0,38,0,198,0,152,0,18;
10,0,177,0,433,0,214,0,18;
0,72,0,570,0,836,0,282,0,18;
16,0,393,0,1517,0,1442,0,354,0,18;
0,136,0,1478,0,3472,0,2292,0,426,0,18;
26,0,829,0,4571,0,7052,0,3410,0,498,0,18;
0,250,0,3554,0,12070,0,13076,0,4808,0,570,0,18;
42,0,1691,0,12479,0,28158,0,22480,0,6494,0,642,0,18;
0,454,0,8108,0,37222,0,59530,0,36308,0,8468,0,714,0,18;
68,0,3359,0,31729,0,97766,0,115948,0,55672,0,10730,0,786,0,18;
0,814,0,17768,0,105238,0,231622,0,210880,0,81708,0,13280,0,858,0,18;
110,0,6537,0,76483,0,306606,0,503348,0,361878,0,115568,0,16118,0,930,0,18;
0,1446,0,37736,0,278626,0,803060,0,1016880,0,590846,0,158404,0,19244,0,1002,0,18;
178,0,12511,0,176833,0,889916,0,1923278,0,1929730,0,924216,0,211368,0,22658,0,1074,0,18;
0,2548,0,78144,0,700670,0,2549216,0,4268026,0,3469042,0,1392996,0,275612,0,26360,0,1146,0,18;
288,0,23617,0,395387,0,2430464,0,6661414,0,8867630,0,5948792,0,2032802,0,352288,0,30350,0,1218,0,18;
0,4460,0,158492,0,1690478,0,7547920,0,16089358,0,17395888,0,9787628,0,2883858,0,442548,0,34628,0,1290,0,18;
466,0,44067,0,860069,0,6319840,0,21344172,0,36292416,0,32446518,0,15527142,0,3990996,0,547544,0,39194,0,1362,0,18;
		

Crossrefs

Cf. A180970 (row sums), A068922 (column m=0), A271786 (column m=1), A272471 (2 by n grid), A100245 (row reversed without tatami condition).

Formula

G.f. x *(x^4*y^3 +7*x*y^2 +3*x +2*y +y^3 +x^6*y +3*x^2*y -x^3*y^2 -6*x^4*y -x^2*y^5 +x^2*y^3 +y^3*x^6 -2*y^4*x^5 -2*x^3 -2*x^5 +y^5*x^4 -x^3*y^4 -x^5*y^2 +x^7) / (x^6 +x^5*y -2*x^4*y^2 -2*x^2 -x*y +1). - R. J. Mathar, May 01 2016

A180965 Number of tatami tilings of a 2 X n grid (with monomers allowed).

Original entry on oeis.org

1, 2, 6, 13, 29, 68, 156, 357, 821, 1886, 4330, 9945, 22841, 52456, 120472, 276681, 635433, 1459354, 3351598, 7697381, 17678037, 40599916, 93242996, 214144685, 491811165, 1129508406, 2594063186, 5957604017, 13682413681, 31423445328, 72168035504, 165743294353
Offset: 0

Views

Author

Frank Ruskey, Sep 29 2010

Keywords

Comments

A tatami tiling consists of dimers (1 x 2) and monomers (1 x 1) where no four meet at a point.
Also, a(n) is the number of permutations of 1, ..., n+1 such that i can go to j only if |i-j| <= 2 and such that the pattern cdab (two consecutive pairs of elements swap position) is explicitly forbidden. - Jean M. Morales, Jun 02 2013

Examples

			Below we show the a(3) = 13 tatami tilings of a 2 X 3 rectangle where v = square of a vertical dimer, h = square of a horizontal dimer, m = monomer:
vvv vhh vmm vhh vmv vvm hhv hhm hhv mvv mhh mmv mvm
vvv vhh vhh vmm vmv vvm hhv mhh mmv mvv hhm hhv mvm
		

Crossrefs

Cf. A000045 (1 X n grid), A180970 (3 X n grid).
Row sums of A272471.

Programs

  • GAP
    a:=[1,2,6,13];; for n in [5..35] do a[n]:=2*a[n-1]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 11 2018
    
  • Magma
    I:=[1,2,6,13]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-3)-Self(n-4): n in [1..35]]; // Vincenzo Librandi, Sep 11 2018
    
  • Maple
    seq(coeff(series((1+2*x^2-x^3)/(x^4-2*x^3-2*x+1),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Sep 11 2018
  • Mathematica
    CoefficientList[(1+2z^2-z^3)/(1-2z-2z^3+z^4) + O[z]^32, z] (* Jean-François Alcover, May 27 2015 *)
    LinearRecurrence[{2,0,2,-1},{1,2,6,13},40] (* Harvey P. Dale, Jan 19 2023 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+2*x^2-x^3)/(1-2*x-2*x^3+x^4)) \\ Altug Alkan, Sep 10 2018
    
  • Python
    from math import log
    print(0,1)
    print(1,2)
    print(2,6)
    print(3,13)
    n,a0,a1,a2,a3 = 3,13,6,2,1
    while log(a0)/log(10) < 1000:
        n,a0,a1,a2,a3 = n+1,2*(a0+a2)-a3,a0,a1,a2
        print(n,a0) # A.H.M. Smeets, Sep 10 2018
    
  • Sage
    def A180965_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+2*x^2-x^3)/(1-2*x-2*x^3+x^4) ).list()
    A180965_list(40) # G. C. Greubel, Apr 06 2021

Formula

G.f.: (1 + 2*x^2 - x^3)/(1 - 2*x - 2*x^3 + x^4).
Lim_{n -> inf} a(n)/a(n-1) = (sqrt(3) + 1)/2 + sqrt(sqrt(3)/2). - A.H.M. Smeets, Sep 10 2018
a(n) = 2*a(n-1) + 2*a(n-3) - a(n-4). - Muniru A Asiru, Sep 11 2018
Showing 1-3 of 3 results.