cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A068922 Number of ways to tile a 3 X 2n room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

3, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338, 126491972
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068928 for incongruent tilings, A068920 for more info. First column of A272472.
Essentially the same as A006355.
Essentially the same as A078642. - Georg Fischer, Oct 06 2018

Programs

  • GAP
    Concatenation([3],List([2..40],n->2*Fibonacci(n+1))); # Muniru A Asiru, Oct 07 2018
  • Magma
    [3] cat [2*Fibonacci(n+1): n in [2..50]]; // Vincenzo Librandi, Oct 07 2018
    
  • Maple
    with(combinat): 3,seq(2*fibonacci(n+1),n=2..40); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    Join[{3}, Table[2 Fibonacci[n + 1], {n, 2, 50}]] (* Vincenzo Librandi, Oct 07 2018 *)
    CoefficientList[Series[(x^2-x-3) / (x^2+x-1), {x, 0, 50}], x] (* Stefano Spezia, Oct 07 2018 *)
  • PARI
    Vec(x*(3+x-x^2) / (1-x-x^2) + O(x^50)) \\ Colin Barker, Jan 29 2017
    

Formula

For n >= 2, a(n) = 2*F(n+1), where F(n)=A000045(n) is the n-th Fibonacci number.
G.f.: x*(x^2-x-3) / (x^2+x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009
From Colin Barker, Jan 29 2017: (Start)
a(n) = (2^(-n)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))) / sqrt(5) for n>1.
a(n) = a(n-1) + a(n-2) for n>3. (End)
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - 2 + x. - Stefano Spezia, Apr 18 2022

A180970 Number of tatami tilings of a 3 X n grid (with monomers allowed).

Original entry on oeis.org

1, 3, 13, 22, 44, 90, 196, 406, 852, 1778, 3740, 7822, 16404, 34346, 72004, 150822, 316076, 662186, 1387596, 2907262, 6091780, 12763778, 26744268, 56036566, 117413804, 246015450, 515476036, 1080072022, 2263070868, 4741795442
Offset: 0

Views

Author

Frank Ruskey, Sep 29 2010

Keywords

Comments

A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point.

Examples

			Below we show the a(2) = 13 tatami tilings of a 2 X 3 rectangle where v = square of a vertical dimer, h = square of a horizontal dimer, m = monomer:
hh hh hh hh hh hh vv vm vm mm mv mv mm
hh vv mv vm mm hh vv vv vm hh vv mv hh
hh vv mv vm hh mm hh mv hh hh vm hh mm
		

References

  • A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.

Crossrefs

Cf. A180965 (2 X n grid), A192090 (4 X n grid), row sums of A272472.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1 +2*x +8*x^2 +3*x^3 -6*x^4 -3*x^5 -4*x^6 +2*x^7 +x^8)/(1 -x -2*x^2 -2*x^4 +x^5 +x^6) )); // G. C. Greubel, Apr 05 2021
    
  • Mathematica
    Join[{1,3,13}, LinearRecurrence[{1,2,0,2,-1,-1}, {22,44,90,196,406,852}, 37]] (* Jean-François Alcover, Jan 29 2019 *)
  • Sage
    def A180970_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1 +2*x +8*x^2 +3*x^3 -6*x^4 -3*x^5 -4*x^6 +2*x^7 +x^8)/(1 -x -2*x^2 -2*x^4 +x^5 +x^6) ).list()
    A180970_list(40) # G. C. Greubel, Apr 05 2021

Formula

G.f.: (1 + 2*x + 8*x^2 + 3*x^3 - 6*x^4 - 3*x^5 - 4*x^6 + 2*x^7 + x^8)/(1 - x - 2*x^2 - 2*x^4 + x^5 + x^6).

A271786 Expansion of 2*(1-x)*(2*x^2+4*x+1) / (1-x-x^2)^2.

Original entry on oeis.org

2, 10, 18, 38, 72, 136, 250, 454, 814, 1446, 2548, 4460, 7762, 13442, 23178, 39814, 68160, 116336, 198026, 336254, 569702, 963270, 1625708, 2739028, 4607522, 7739386, 12982530, 21750374, 36396984, 60839896, 101593498, 169482550, 282481822, 470419302
Offset: 0

Views

Author

R. J. Mathar, Apr 14 2016

Keywords

Comments

The number of Tatami Tilings of the 3 X (2n+1) floor with one monomer at an arbitrary place (and therefore 3n+1 dimers).
The sequence is an overlay of the sequence b(n) = 1, 4, 7, 14, 26,... with g.f. B(x) = x*(1+2*x^2-2*x^4-2*x^6) / (1-x^2-x^4)^2 and the sequence c(n) = 0, 2, 4, 10, 20,... with g.f. C(x) = 2*x^3/(1-x^2-x^4)^2, meaning a(n) = 2*b(n)+c(n) = 2, 10, 18, 38, 72.... The sequence b(n) counts the tatami tilings with one monomer that must be in the first of the three lanes of the 3Xn grid. The sequence c(n) counts the tatami tilings with one monomer that must be in the middle lane of the grid. By up-down symmetry b(n) counts also the tatami tilings with one monomer that must be in the last of the three lanes. - R. J. Mathar, May 03 2016

Crossrefs

Cf. A001629, A271785, first column of A272472.

Programs

Formula

a(n) = 2*(A001629(n+2)+A271785(n)) .

A272473 Triangle T(n,m) by rows: the number of tatami tilings of a 4 by n grid with 2*m monomers.

Original entry on oeis.org

1, 3, 1, 4, 18, 7, 4, 27, 13, 2, 32, 32, 3, 52, 64, 7, 3, 62, 133, 40, 3, 99, 269, 110, 9, 5, 152, 437, 280, 48, 5, 163, 730, 669, 138, 9, 6, 258, 1243, 1318, 433, 48, 8, 343, 1823, 2670, 1239, 154, 9, 8, 408, 2949, 5240, 2849, 600, 48, 11, 632, 4577
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2016

Keywords

Comments

The number of squares in the 4 by n floor is even, so the number of tilings with an odd number of monomers is zero.

Examples

			The triangle starts in row n=1 and column m=0 as:
1,3,1;
4,18,7;
4,27,13;
2,32,32;
3,52,64,7;
3,62,133,40;
3,99,269,110,9;
5,152,437,280,48;
5,163,730,669,138,9;
6,258,1243,1318,433,48;
8,343,1823,2670,1239,154,9;
8,408,2949,5240,2849,600,48;
11,632,4577,9011,6655,1927,172,9;
13,746,6287,16184,14697,4930,777,48;
14,971,9928,28135,28805,13089,2669,190,9;
19,1394,14234,44806,58022,32176,7501,954,48;
21,1610,19501,75702,111795,70427,22344,3445,208,9;
25,2224,29785,121302,199354,157078,59859,10576,1131,48;
32,2909,40073,184597,366553,331449,143611,34646,4257,226,9;
35,3464,55939,298278,644436,651772,350855,99300,14167,1308,48;
44,4820,81474,449995,1081033,1303651,802565,258303,50095,5105,244,9;
53,5924,106460,670726,1868914,2488996,1719501,684338,151835,18274,1485,48;
60,7408,150672,1040424,3077401,4548409,3716945,1678785,425017,68761,5989,262,9;
76,9972,208211,1503372,4956628,8434302,7641320,3879356,1208052,218806,22897,1662,48;
		

Crossrefs

Cf. A192090 (row sums), A068923 (column m=0), A272472 (3 by n grid), A100265 (without tatami condition, reversed rows).

Formula

G.f. x*( -1 -8*x^7*y^2 +21*x^5*y^2 -7*x^7*y^6 +4*x^3*y^2 -3*x^7 +2*x^5 -8*x^2*y^2 -4*x^8*y^4 -3*x -6*x*y^4 -15*x*y^2 -2*x^3*y^4 -6*x^8 -5*x^10*y^2 -5*x^9*y^2 -y^4 -2*x^8*y^2 -3*y^2 -8*x^11*y^2 +5*x^11*y^4 -3*x^2*y^4 -2*x^5*y^6 +2*x^13 +x^12 +x^11 +x^6 -7*x^7*y^4 +x^7*y^8 +11*x^4*y^2 -3*x^9 -15*x^10*y^4 -2*x^10*y^6 +18*x^9*y^4 +36*x^6*y^4 +20*x^6*y^2 -17*x^ 5*y^4 -8*x^4*y^4 +4*x^3 +8*x^6*y^6 +5*x^4 +2*x^9*y^6 -y^8*x^6 +6*y^6*x^3 +y^6*x^2)/ (x^11 -x^10 +2*x^9 -3*x^9*y^2 +x^8*y^2 -2*x^8 +x^7 +x^6*y^4 -5*x^6*y^2 -3*x^6 +2*x^5 +5*x^5*y^2 +x^4*y^2 -2*x^4 -x^3*y^2 +2*x^3 +x^2*y^2 +x -1). - R. J. Mathar, May 01 2016
Showing 1-4 of 4 results.