A181050 Decimal expansion of the constant 1+3/(5+7/(9+11/(13+...))), using all odd integers in this generalized continued fraction.
1, 5, 2, 4, 9, 6, 5, 3, 4, 4, 4, 1, 7, 8, 9, 4, 9, 1, 2, 8, 2, 1, 2, 2, 3, 0, 9, 4, 0, 6, 2, 5, 5, 6, 2, 3, 2, 4, 6, 8, 4, 6, 0, 4, 2, 9, 9, 9, 9, 4, 6, 8, 1, 1, 5, 3, 6, 9, 2, 1, 1, 5, 0, 9, 1, 2, 8, 2, 6, 8, 4, 4, 7, 6, 2, 0, 5, 0, 1, 7, 4, 7, 9, 7, 5, 6, 4, 9, 8, 4, 9, 4, 4, 3, 5, 0, 1, 3, 5, 4, 4, 8, 6, 9, 4
Offset: 1
Examples
1.524965344417894912821223094...
Crossrefs
Cf. A113011.
Programs
-
Maple
r:= (n, i)-> n+ `if`(i<1, 1, (n+2)/r(n+4, i-1)): s:= convert(evalf(r(1, 80)/10, 130), string): seq(parse(s[n+1]), n=1..120); # Alois P. Heinz, Oct 16 2011
-
Mathematica
digits = 105; f[n_] := f[n] = Fold[#2 + (#2+2)/#1 &, 4*n+1, Range[4*n-3, 1, -4] ] // RealDigits[#, 10, digits]& // First; f[digits]; f[n = 2*digits]; While[f[n] != f[n/2], n = 2*n]; f[n] (* Jean-François Alcover, Feb 21 2014 *)
Comments