A111190 Numbers k such that floor(Pi^k - e^k) is prime.
2, 5, 6, 73, 1547, 2714, 4937, 5212, 58775
Offset: 1
Examples
floor(Pi^6 - e^6) = 557 is prime, hence 6 is a term.
Crossrefs
Cf. A181052.
Programs
-
Mathematica
$MaxExtraPrecision = 10^6; Do[k = Floor[Pi^n - E^n]; If[PrimeQ[k], Print[n]], {n, 1, 10000}] Select[Range[6000],PrimeQ[Floor[Pi^#-E^#]]&] (* Harvey P. Dale, Jun 02 2014 *) ParallelTable[If[PrimeQ[Floor[Pi^k-E^k]],k,Nothing],{k,0,9*10^4}]//.{}->Nothing (* J.W.L. (Jan) Eerland, Sep 29 2022 *)
Extensions
a(9) from J.W.L. (Jan) Eerland, Sep 29 2022
Comments