A181075 a(n) = Sum_{k=0..n-1} C(n-1,k)^(k+1) * n/(n-k).
1, 3, 10, 71, 1026, 30912, 2219946, 339460991, 112986526834, 91234232847938, 161113616883239406, 619495336824891912596, 5839092706931985694730356, 124192664709851995516427897172, 5681764626723349386531457243004370
Offset: 1
Keywords
Examples
L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 71*x^4/4 + 1026*x^5/5 + ... which equals the series: L(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 +...)*x + (1 + 2^2*x + 3^3*x^2 + 4^4*x^3 + 5^5*x^4 + 6^6*x^5 + ...)*x^2/2 + (1 + 3^2*x + 6^3*x^2 + 10^4*x^3 + 15^5*x^4 + 21^6*x^5 + ...)*x^3/3 + (1 + 4^2*x + 10^3*x^2 + 20^4*x^3 + 35^5*x^4 + 56^6*x^5 + ...)*x^4/4 + (1 + 5^2*x + 15^3*x^2 + 35^4*x^3 + 70^5*x^4 + 126^6*x^5 + ...)*x^5/5 + (1 + 6^2*x + 21^3*x^2 + 56^4*x^3 + 126^5*x^4 + 252^6*x^5 + ...)*x^6/6 + (1 + 7^2*x + 28^3*x^2 + 84^4*x^3 + 210^5*x^4 + 462^6*x^5 + ...)*x^7/7 + ... Exponentiation yields the g.f. of A181074: exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 23*x^4 + 231*x^5 + 5405*x^6 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..75
Programs
-
Magma
[(&+[Binomial(n-1, k)^(k+1)*n/(n-k): k in [0..n-1]]): n in [1..25]]; // G. C. Greubel, Apr 05 2021
-
Mathematica
Table[Sum[Binomial[n-1, k]^(k+1)*n/(n-k), {k,0,n-1}], {n,25}] (* G. C. Greubel, Apr 05 2021 *)
-
PARI
{a(n)=sum(k=0, n-1, binomial(n-1, k)^(k+1)*n/(n-k))}
-
PARI
{a(n)=n*polcoeff(sum(m=1, n, sum(k=0, n, binomial(m+k-1,k)^(k+1)*x^k)*x^m/m)+x*O(x^n), n)}
-
Sage
[sum(binomial(n-1,k)^(k+1)*n/(n-k) for k in (0..n-1)) for n in (1..25)] # G. C. Greubel, Apr 05 2021
Formula
L.g.f.: L(x) = Sum_{n>=1} [ Sum_{k>=0} C(n+k-1,k)^(k+1)*x^k ] *x^n/n.
Logarithmic derivative of A181074.