cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181105 Triangle T(n,k) read by rows. T(n,k)=abs(A181101)*n/k.

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 0, 2, 0, 0, 5, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Gary W. Adamson, Oct 03 2010

Keywords

Comments

Let A=T(n,k)*T(n,k), B=A*A, C=B*B, D=C*C, and so on. Then the first column in the last matrix (D) converges to the natural numbers. Rows sums are (unsurprisingly) A020639. Except for the first column, the largest and last element in the columns are also A020639.

Examples

			Triangle starts:
1,
2,0,
3,0,0,
0,2,0,0,
5,0,0,0,0,
0,0,2,0,0,0,
7,0,0,0,0,0,0,
0,0,0,2,0,0,0,0,
0,0,3,0,0,0,0,0,0,
0,0,0,0,2,0,0,0,0,0,
11,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,2,0,0,0,0,0,0,
13,0,0,0,0,0,0,0,0,0,0,0,0,
		

Crossrefs

A030209 Expansion of (eta(q) * eta(q^2) * eta(q^3) * eta(q^6))^2 in powers of q.

Original entry on oeis.org

1, -2, -3, 4, 6, 6, -16, -8, 9, -12, 12, -12, 38, 32, -18, 16, -126, -18, 20, 24, 48, -24, 168, 24, -89, -76, -27, -64, 30, 36, -88, -32, -36, 252, -96, 36, 254, -40, -114, -48, 42, -96, -52, 48, 54, -336, -96, -48, -87, 178, 378, 152, 198, 54, 72, 128
Offset: 1

Views

Author

Keywords

Comments

Identical to table 1, p. 493, of Alaca citation. - Jonathan Vos Post, May 24 2007
Unique cusp form of weight 4 for congruence group Gamma_1(6). - Michael Somos, Aug 11 2011
Number 14 of the 74 eta-quotients listed in Table I of Martin (1996).
The table 1, p. 493 of Alaca reference is the first 50 values of c_6(n). - Michael Somos, May 17 2015

Examples

			G.f. = q - 2*q^2 - 3*q^3 + 4*q^4 + 6*q^5 + 6*q^6 - 16*q^7 - 8*q^8 + 9*q^9 - 12*q^10 + ...
		

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma1(6), 4), 57) [1]; /* Michael Somos, May 17 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^2] QPochhammer[ q^3] QPochhammer[ q^6])^2, {q, 0, n}]; (* Michael Somos, Aug 11 2011 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A))^2, n))}; /* Michael Somos, Feb 14 2006 */
    
  • Sage
    CuspForms( Gamma1(6), 4, prec = 57).0; # Michael Somos, Aug 11 2011
    

Formula

Euler transform of period 6 sequence [ -2, -4, -4, -4, -2, -8, ...]. - Michael Somos, Feb 13 2006
a(n) is multiplicative with a(p^e) = (-p)^e if p<5, a(p^e) = a(p) * a(p^(e-1)) - p^3 * a(p^(e-2)) otherwise. - Michael Somos, Feb 13 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 36 (t/i)^4 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 11 2011
G.f.: x * (Product_{k>0} (1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(6*k)))^2.
a(2*n) = -2 * a(n). Convolution square of A030188. - Michael Somos, May 27 2012
Convolution with A181102 is A186100. - Michael Somos, Jul 07 2015
Showing 1-2 of 2 results.