A181106 Largest odd number strictly less than a square.
-1, 3, 7, 15, 23, 35, 47, 63, 79, 99, 119, 143, 167, 195, 223, 255, 287, 323, 359, 399, 439, 483, 527, 575, 623, 675, 727, 783, 839, 899, 959, 1023, 1087, 1155, 1223, 1295, 1367, 1443, 1519, 1599, 1679, 1763, 1847, 1935, 2023, 2115, 2207, 2303, 2399, 2499
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Mathematica
Table[n^2-2^Mod[n,2],{n,50}] (* Ray Chandler, Dec 05 2011*) LinearRecurrence[{2,0,-2,1},{-1,3,7,15},50] (* Harvey P. Dale, Nov 16 2019 *)
-
PARI
Vec(x*(x^3-x^2-5*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Jun 27 2015
Formula
a(n) = n^2 - 2^(n mod 2) = -A141354(n-1).
From Colin Barker, Jun 27 2015: (Start)
a(n) = n^2 - 1 for n even; a(n) = n^2 - 2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(x^3-x^2-5*x+1) / ((x-1)^3*(x+1)).
(End)
Extensions
Edited by Ray Chandler, Dec 05 2011
Comments