A181197 Number of 3 X n matrices containing a permutation of 1..3*n in increasing order rowwise, columnwise and (downwards) antidiagonally.
1, 1, 4, 29, 290, 3532, 49100, 750325, 12310294, 213446666, 3868253164, 72686739116, 1407643591804, 27964937748724, 567853691242796, 11751537336221989, 247263499985110046, 5279409371079693454, 114199628255736623996, 2499214354674134770354
Offset: 1
Keywords
Examples
All four 3 X 3 examples: 1..2..3....1..2..3....1..2..4....1..2..4 4..5..6....4..5..7....3..5..6....3..5..7 7..8..9....6..8..9....7..8..9....6..8..9
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..220
- Joerg Arndt, The a(4)=29 truncated shifted standard Young tableaux of shape [4,4,4].
- J. B. Lewis, Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux, Ph. D. Dissertation, Department of Mathematics, MIT, 2012. - From _N. J. A. Sloane_, Oct 12 2012
- Ran Pan, Problem 0, Project P.
- Ping Sun, Enumeration of standard Young tableaux of shifted strips with constant width, arXiv:1506.07256 [math.CO], 24 Jun 2015.
Crossrefs
Row n=3 of A227578. - Alois P. Heinz, Jul 17 2013
Programs
-
Maple
a:= n-> `if`(n<2, 1, add(((2*n+k-1)!*(n-k)*(n-k-1)) / (n!*(n-1)!*k!*(2*n-1)*(n+k)*(n+k-1)), k=0..n-2)): seq(a(n), n=1..30); # Alois P. Heinz, Jul 01 2012
-
Mathematica
Flatten[{1,Table[Sum[((2*n+k-1)!*(n-k)*(n-k-1))/(n!*(n-1)!*k!*(2*n-1)*(n+k)*(n+k-1)),{k,0,n-2}],{n,2,20}]}] (* Vaclav Kotesovec, Jul 21 2013 *)
Formula
a(n) = Sum_{k=0..n-2} ((2n+k-1)!*(n-k)*(n-k-1)) / (n!*(n-1)!*k!*(2n-1) * (n+k)*(n+k-1)) for n>=2, a(1) = 1.
Recurrence: (2*n-1)*(7*n-13)*n^2*a(n) = 2*(182*n^4 - 1185*n^3 + 2722*n^2 - 2625*n + 900)*a(n-1) + 3*(2*n-5)*(3*n-5)*(3*n-4)*(7*n-6)*a(n-2). - Vaclav Kotesovec, Jul 21 2013
a(n) ~ 3^(3*n+1/2)/(64*Pi*n^4). - Vaclav Kotesovec, Jul 21 2013
Extensions
Formula and comments from Joel B. Lewis, Jul 25 2011
Comments