cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181214 Number of n X 3 binary matrices with no three 1's adjacent in a line diagonally or antidiagonally.

Original entry on oeis.org

8, 64, 400, 2500, 16100, 103684, 665252, 4268356, 27399292, 175880644, 1128941012, 7246435876, 46513697660, 298563888100, 1916431442740, 12301251494596, 78959676072668, 506828955431044, 3253250254953428, 20882069005614436
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Comments

Column 3 of A181217.

Examples

			Some avoided solutions for 4 X 3:
  0 0 1   0 0 0   0 0 0   1 0 0   0 0 0   0 0 0   0 0 0
  0 0 1   0 0 1   1 0 1   0 0 1   1 0 1   1 0 0   0 0 1
  0 1 0   1 1 0   0 1 0   0 1 0   0 1 0   0 1 1   0 1 0
  1 0 0   1 0 0   0 0 1   1 0 0   1 0 0   0 0 1   1 0 1
		

Crossrefs

Cf. A181217.

Programs

  • Magma
    I:=[8,64,400,2500,16100,103684,665252,4268356,27399292]; [n le 9 select I[n] else 6*Self(n-1)+16*Self(n-3)+21*Self(n-4)-78*Self(n-5) -32*Self(n-6)-12*Self(n-8)+8*Self(n-9): n in [1..25]]; // Vincenzo Librandi, May 01 2018
  • Maple
    f:= gfun:-rectoproc({a(n) = 6*a(n-1) + 16*a(n-3) + 21*a(n-4) - 78*a(n-5) - 32*a(n-6) - 12*a(n-8) + 8*a(n-9),seq(a(i)=[8, 64, 400, 2500, 16100, 103684, 665252, 4268356, 27399292][i],i=1..9)},a(n),remember):
    map(f, [$1..20]); # Robert Israel, Apr 30 2018
  • Mathematica
    LinearRecurrence[{6, 0, 16, 21, -78, -32, 0, -12, 8}, {8, 64, 400, 2500, 16100, 103684, 665252, 4268356, 27399292}, 20] (* Vincenzo Librandi, May 01 2018 *)

Formula

Empirical: a(n) = 6*a(n-1) + 16*a(n-3) + 21*a(n-4) - 78*a(n-5) - 32*a(n-6) - 12*a(n-8) + 8*a(n-9).
Empirical g.f.: 4*x*(2 + 4*x + 4*x^2 - 7*x^3 - 23*x^4 - 9*x^5 - x^6 - 2*x^7 + 2*x^8) / ((1 - 6*x - 3*x^2 + 2*x^3)*(1 + 3*x^2 - 12*x^4 - 4*x^6)). - Colin Barker, Feb 22 2018
Empirical formula confirmed by Robert Israel, Apr 30 2018: see link.

A181213 Number of n X n binary matrices with no three 1's adjacent in a line diagonally or antidiagonally.

Original entry on oeis.org

2, 16, 400, 28561, 7133488, 5037592576, 11494250657760, 81903288018125025, 1774095560440527819780, 120560883729040740095954944, 25387802734116842287569948104640, 16523941893729018365186706701633818689
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Diagonal of A181217

Examples

			Some avoided solutions for 4X4
..1..0..0..0....0..0..0..0....0..0..0..1....0..1..0..0....0..0..1..0
..0..1..0..0....0..0..1..1....0..1..1..0....0..0..1..0....0..1..0..0
..0..0..1..1....0..0..1..0....0..1..0..0....1..0..0..1....1..0..0..0
..0..0..0..0....0..1..0..0....0..0..0..0....0..0..0..0....0..0..1..0
		

A181215 Number of nX4 binary matrices with no three 1's adjacent in a line diagonally or antidiagonally.

Original entry on oeis.org

16, 256, 2500, 28561, 337561, 3857296, 44408896, 512750736, 5909458129, 68121522001, 785456787600, 9055597599504, 104402987257284, 1203692301444361, 13877652596295601, 159998643202876416, 1844662908618342400
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Column 4 of A181217

Examples

			Some avoided solutions for 3X4
..1..1..0..0....1..0..1..0....0..0..0..1....0..0..0..1....1..0..0..0
..0..0..1..0....0..1..0..0....1..0..1..0....0..0..1..0....0..1..0..0
..0..0..0..1....0..0..1..0....0..1..0..0....0..1..1..0....0..1..1..0
		

Formula

Empirical: a(n)=11*a(n-1)+16*a(n-2)-24*a(n-3)-906*a(n-4)-2624*a(n-5)+11414*a(n-6)+14042*a(n-7)+444*a(n-8)-92598*a(n-9)-52264*a(n-10)+100166*a(n-11)+77798*a(n-12)-14516*a(n-13)-50238*a(n-14)+950832*a(n-15)-91514*a(n-16)-1551794*a(n-17)-699816*a(n-18)+414094*a(n-19)+1438537*a(n-20)+72931*a(n-21)-647214*a(n-22)+142392*a(n-23)+31008*a(n-24)-44992*a(n-25)+6816*a(n-26)+2496*a(n-27)-256*a(n-28)

A181216 Number of nX5 binary matrices with no three 1's adjacent in a line diagonally or antidiagonally.

Original entry on oeis.org

32, 1024, 16100, 337561, 7133488, 144192064, 2970419984, 61244865529, 1259243459640, 25918851195136, 533530588518792, 10980680240365081, 226010597463198528, 4651909195666878016, 95747873079255531440
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Column 5 of A181217

Examples

			Some avoided solutions for 3X5
..1..0..0..1..0....1..0..1..0..0....0..1..0..0..0....1..0..0..0..0
..0..0..1..0..0....0..0..0..1..0....0..0..1..0..0....0..1..0..0..0
..0..1..0..0..0....0..0..0..0..1....1..0..0..1..0....1..0..1..0..0
		

Formula

Empirical: a(n)=22*a(n-1)-604*a(n-3)+949*a(n-4)-20374*a(n-5)+353728*a(n-6)-6761420*a(n-7)+2334524*a(n-8)+149227432*a(n-9)+1036912*a(n-10)+786083664*a(n-11)-6348686288*a(n-12)+2369824480*a(n-13)-21332208448*a(n-14)-221813816640*a(n-15)+487649719024*a(n-16)-1323813424928*a(n-17)+9601908443392*a(n-18)+14005763608000*a(n-19)+13939002755200*a(n-20)-41998669585920*a(n-21)-832035107568896*a(n-22)+857664547778560*a(n-23)-263819264052224*a(n-24)-707004879315968*a(n-25)+2352506008625152*a(n-26)-832956887162880*a(n-27)+39015420513468416*a(n-28)-40742830573830144*a(n-29)-953990534791168*a(n-30)-4671459648733184*a(n-31)-53104776120631296*a(n-32)+60132429611663360*a(n-33)+56480529858428928*a(n-34)-59215381128019968*a(n-35)-23629212736815104*a(n-36)+39271321099567104*a(n-37)-45799121633673216*a(n-38)+23340632953061376*a(n-39)-606227585789067264*a(n-40)+652150434290466816*a(n-41)+9621948661235712*a(n-42)+25759689128017920*a(n-43)+209670545225023488*a(n-44)-219911104468353024*a(n-45)-7063606294216704*a(n-46)-10420071696433152*a(n-48)+9618527719784448*a(n-49)
Showing 1-4 of 4 results.