cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181282 a(n) is the number of associate Rota-Baxter words in one idempotent generator x and one idempotent operator P of degree n. Such words are Rota-Baxter words that begin and/or end with x, and P is applied n times in the word.

Original entry on oeis.org

1, 3, 12, 60, 336, 2016, 12672, 82368, 549120, 3734016, 25798656, 180590592, 1278025728, 9128755200, 65727037440, 476521021440, 3475800391680, 25489202872320, 187815179059200, 1389832325038080, 10324468700282880
Offset: 0

Views

Author

William Sit (wyscc(AT)sci.ccny.cuny.edu), Oct 11 2010

Keywords

Examples

			For n = 2, the a(2) = 12 associate Rota-Baxter words are: xP(xP(x)), xP(xP(x))x, P(xP(x))x, xP(P(x)x), xP(P(x)x)x, P(P(x)x)x, xP(xP(x)x), xP(xP(x)x)x, P(xP(x)x)x, xP(x)xP(x), xP(x)xP(x)x, P(x)xP(x)x.
		

Crossrefs

Programs

  • Magma
    [1] cat [3*2^(n-1)*Catalan(n): n in [1..40]]; // G. C. Greubel, Jan 04 2023
    
  • Mathematica
    CoefficientList[Series[(3-4x-3Sqrt[1-8x])/(8x), {x,0,40}], x]
    a[0] = 1; a[n_]:= 3*2^(n-1) CatalanNumber[n]; Table[a[n], {n,0,20}] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    a(n) = if(n==0, 1, 3*2^(n-1)*(binomial(2*n,n)/(n+1))); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    import math
    f = math.factorial
    def C(n,r): return f(n)/f(r)/f(n-r)
    def A181282(n): return 1 if n==0 else 3*2**(n-1)*(C(2*n,n)/(n+1)) # Indranil Ghosh, Mar 05 2017
    
  • SageMath
    [3*2^(n-1)*catalan_number(n) -int(n==0)/2 for n in range(41)] # G. C. Greubel, Jan 04 2023

Formula

a(n) = 3*2^(n-1)*A000108(n).
G.f.: (3 - 4*t - 3*sqrt(1-8*t))/(8*t).
(n+1)*a(n) = 4*(2*n-1)*a(n-1). - R. J. Mathar, Jul 24 2012
a(n) = (n+2) * A000257(n). - F. Chapoton, Feb 26 2024