A181306 Number of 2-compositions of n having no increasing columns.
1, 1, 3, 7, 18, 44, 110, 272, 676, 1676, 4160, 10320, 25608, 63536, 157648, 391152, 970528, 2408064, 5974880, 14824832, 36783296, 91266496, 226449920, 561866240, 1394099328, 3459031296, 8582528768, 21294921472, 52836837888, 131098461184
Offset: 0
Examples
a(2) = 3 because we have (1/1), (2/0), and (1,1/0,0) (the 2-compositions are written as (top row / bottom row)). Alternatively, a(2) = 3 because we have (0/2), (2,0), and (0,0/1,1) (the 2-compositions are written as (top row/bottom row)).
Links
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-2).
Crossrefs
Cf. A181304.
Programs
-
Maple
g := (1+z)*(1-z)^2/(1-2*z-2*z^2+2*z^3): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
-
Mathematica
CoefficientList[Series[((1+x)(1-x)^2)/(1-2x-2x^2+2x^3),{x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{2,2,-2},{1,3,7},30]] (* Harvey P. Dale, Mar 07 2012 *)
Formula
G.f.: (1+z)*(1-z)^2/(1-2*z-2*z^2+2*z^3).
a(n) = A181304(n,0).
a(0)=1, a(1)=1, a(2)=3, a(3)=7, a(n)=2*a(n-1)+2*a(n-2)-2*a(n-3). - Harvey P. Dale, Mar 07 2012
Extensions
Edited by N. J. A. Sloane, Oct 15 2010
Comments