A181329 Number of 2-compositions of n having no column with an even sum. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
1, 2, 4, 12, 32, 86, 232, 624, 1680, 4522, 12172, 32764, 88192, 237390, 638992, 1720000, 4629792, 12462194, 33544980, 90294348, 243048864, 654224230, 1761001208, 4740156528, 12759266608, 34344622042, 92446776092, 248842639740, 669819565056, 1802979787550, 4853151929120
Offset: 0
Examples
a(2)=4 because we have (1,0/0,1),(0,1/1,0),(1,1/0,0), and (0,0/1,1) (the 2-compositions are written as (top row/bottom row)).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
- Index entries for linear recurrences with constant coefficients, signature (2,2,0,-1).
Crossrefs
Cf. A181327.
Programs
-
Maple
g := (1-z^2)^2/(1-2*z-2*z^2+z^4): gser := series(g, z = 0, 32): seq(coeff(gser, z, n), n = 0 .. 30);
-
Mathematica
CoefficientList[Series[(1 - x^2)^2/(1 - 2 x - 2 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2014 *)
-
PARI
Vec((1-z^2)^2/(1-2*z-2*z^2+z^4) + O(z^30)) \\ Stefano Spezia, Sep 05 2025
Formula
G.f.: (1-z^2)^2/(1-2*z-2*z^2+z^4).
Comments