cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A382923 Square array A(n,k), n >= 0, k >= 0, read by downward antidiagonals: A(n,k) is the number of m-compositions of n with k zeros.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 3, 5, 7, 0, 4, 13, 16, 16, 0, 5, 14, 33, 40, 35, 0, 6, 29, 70, 105, 100, 75, 0, 7, 27, 88, 207, 292, 244, 159, 0, 8, 51, 152, 336, 604, 758, 576, 334, 0, 9, 44, 206, 588, 1161, 1749, 1920, 1329, 696, 0, 10, 79, 300, 882, 2076, 3685, 4924, 4802, 3028, 1442
Offset: 0

Views

Author

John Tyler Rascoe, Apr 09 2025

Keywords

Comments

For some m > 0, an m-composition of n is a rectangular array of nonnegative integers with m rows, at least one nonzero entry in each column, and having the sum of all entries equal to n.

Examples

			Square array begins:
   1,   0,   0,   0,    0,    0, ...
   1,   2,   3,   4,    5,    6, ...
   3,   5,  13,  14,   29,   27, ...
   7,  16,  33,  70,   88,  152, ...
  16,  40, 105, 207,  336,  588, ...
  35, 100, 292, 604, 1161, 2076, ...
  ...
A(2,0) = 3 counts:
  [2],  [1,1],  [1]
                [1].
A(2,1) = 5 counts:
  [2]   [0]   [1]   [1]   [0]
  [0],  [2],  [1]   [0]   [1]
              [0],  [1],  [1].
		

Crossrefs

Cf. A038207, A101509 (column k=0), A181331, A261780, A323429, A382924 (main diagonal).

Programs

  • PARI
    G_tx(max_row) = {my(row = max_row, N = row*2, m = List([concat([1],vector(row-1,i,0))]), x='x+O('x^N), h=1 + sum(m=1,N,-1+ 1/(1 + t^m - (t + x/(1-x))^m))); for(n=1,row, listput(m,Vecrev(polcoeff(h, n))[1..row])); matrix(row, row, i,j, m[i][j])}
    G_tx(10)

Formula

G.f.: G(t,x) = 1 + Sum_{m>0} -1 + 1/(1 + t^m - (t + x/(1 - x))^m).

A181294 Number of 0's in all 2-compositions of n. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.

Original entry on oeis.org

0, 2, 10, 46, 198, 816, 3264, 12776, 49192, 186976, 703328, 2623072, 9712864, 35746816, 130873088, 476961920, 1731331200, 6262393344, 22580421120, 81188953600, 291176175104, 1041867493376, 3720118018048, 13257657264128
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2010

Keywords

Comments

a(n)=Sum(A181293(n,k),k=0..n).

Examples

			a(2)=10 because the 2-compositions of 2, written as (top row / bottom row), are (1/1),(0/2),(2/0),(1,0/0,1),(0,1/1,0),(1,1/0,0),(0,0/1,1), having 0 + 1 + 1 + 2 + 2 + 2 + 2 = 10 zeros.
		

References

  • G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.

Crossrefs

Programs

  • Maple
    g := 2*z*(1-z)^3/(1-4*z+2*z^2)^2: gser := series(g, z = 0, 30): seq(coeff(gser, z, n), n = 0 .. 25);

Formula

G.f. = 2z(1-z)^3/(1-4z+2z^2)^2.
a(n) = 2*A181331(n). - Emeric Deutsch, Oct 13 2010

A181330 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k 0's in the top row A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 8, 10, 5, 1, 21, 32, 21, 7, 1, 55, 99, 80, 36, 9, 1, 144, 299, 286, 160, 55, 11, 1, 377, 887, 978, 650, 280, 78, 13, 1, 987, 2595, 3236, 2482, 1275, 448, 105, 15, 1, 2584, 7508, 10438, 9054, 5377, 2261, 672, 136, 17, 1, 6765, 21526, 32991, 31882
Offset: 0

Views

Author

Emeric Deutsch, Oct 13 2010

Keywords

Comments

The sum of entries in row n is A003480(n).
T(n,0) = A000045(2n) (n>=1), Fibonacci numbers.
T(n,1) = A038731(n-1) (n>=1).
Sum(k*T(n,k), k>=0) = A181331.
For the statistic "number of nonzero entries in the top row" see A181332.

Examples

			T(2,1)=3 because we have (0/2), (1,0/0,1), and (0,1/1,0) (the 2-compositions are written as (top row / bottom row)).
Triangle starts:
1;
1,1;
3,3,1;
8,10,5,1;
21,32,21,7,1;
55,99,80,36,9,1;
		

Crossrefs

Programs

  • Maple
    G := (1-z)^2/(1-3*z+z^2-t*z*(1-z)): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 10 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form

Formula

G.f.: G(t,x) = (1-x)^2/(1-3*x+x^2-t*x(1-x)).
The g.f. of column k is x^k*(1-x)^(k+2)/(1-3*x+x^2)^(k+1) (we have a Riordan array).
T(n,k) = 3*T(n-1,k) +T(n-1,k-1) -T(n-2,k) -T(n-2,k-1), with T(0,0)=T(1,0)=T(1,1)=T(2,2)=1, T(2,0)=T(2,1)=3, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013

A382924 Number of m-compositions of n with n zeros.

Original entry on oeis.org

1, 2, 13, 70, 336, 2076, 11091, 65210, 365661, 2159354, 11713047, 71427504, 392916687, 2245186352, 13527678851, 73679458270, 429472428457, 2553994191220, 14264421153074, 80483620074092, 489077890675807, 2768919905996888, 15394229582049408, 91794448088043258
Offset: 0

Views

Author

John Tyler Rascoe, Apr 09 2025

Keywords

Comments

For some m > 0, an m-composition of n is a rectangular array of nonnegative integers with m rows, at least one nonzero entry in each column, and having the sum of all entries equal to n.

Examples

			a(2) = 13 counts:
  [2]  [0]  [0]  [1]  [1]  [1]  [0]  [0]  [0]  [1][1]  [1][0]  [0][0]  [0][1]
  [0]  [2]  [0]  [1]  [0]  [0]  [1]  [1]  [0]  [0][0], [0][1], [1][1], [1][0].
  [0], [0], [2], [0]  [1]  [0]  [1]  [0]  [1]
                 [0], [0], [1], [0], [1], [1],
		

Crossrefs

Cf. A038207, A101509, A181331, A261780, A323429, A382820, (main diagonal of A382923).

Programs

  • PARI
    G_tx(max_row) = {my(row = max_row, N = row*2, m = List([concat([1],vector(row-1,i,0))]), x='x+O('x^N), h=1 + sum(m=1,N,-1+ 1/(1 + t^m - (t + x/(1-x))^m))); for(n=1,row, listput(m,Vecrev(polcoeff(h, n))[1..row])); matrix(row, row, i,j, m[i][j])}
    A382924(max_n) ={my(A=G_tx(max_n)); vector(max_n,i,A[i,i])}
    A382924(20)

Formula

a(n) = [(x*t)^n] 1 + Sum_{m>0} -1 + 1/(1 + t^m - (t + x/(1 - x))^m).
Showing 1-4 of 4 results.