cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181360 Number of forests of rooted trees containing n nodes not counting the root nodes.

Original entry on oeis.org

1, 1, 3, 7, 19, 47, 127, 330, 889, 2378, 6450, 17510, 47907, 131388, 362081, 1000665, 2774857, 7714695, 21505455, 60084062, 168234804, 471977022, 1326558625, 3734804268, 10531738149, 29742332548, 84111212892, 238176473946, 675269414372, 1916715819186
Offset: 0

Views

Author

Peter A. Lawrence, Oct 15 2010

Keywords

Comments

Every tree in the forest must have at least 2 nodes, i.e. at least one more node besides the root. - N. J. A. Sloane, Nov 26 2010
First, T(n), the number of rooted trees with n+1 nodes A000081(n+1) can be computed using partitions of n as follows: let n = (q1*1 + q2*2 + q3*3 + ... + qn*n) be a nonnegative integer partition of n (the "q"s are the multiplicities of the part sizes), and define a^b to be (a+b-1)! / (a-1)! / b! (the number of ways to color b identical items with a colors), then compute the sum of T(0)^q1 * T(1)^q2 * ... * T(n-1)^qn over all such partitions of n.
Then F(n), the number of forests of rooted trees containing N nodes not counting the roots, can be similarly computed as the sum of T(1)^q1 * T(2)^q2 * ... * T(n)^qn over all such partitions of n.
These are the diagonal sums of the triangle in A174135. - N. J. A. Sloane, Nov 26 2010.

Examples

			Trees for example (leaving out the "^0" factors for clarity):
T(0) = 1, T(1) = 1
T(2) = T(1)^1 + T(0)^2 = 2,
T(3) = T(2)^1 + T(1)^1*T(0)^1 + T(0)^3 = 4,
T(4) = T(3)^1 + T(2)^1*T(0)^1 + T(1)^2 + T(1)^1*T(0)^2 +T(0)^4 = 9,
T(5) = T(4)^1 + T(3)^1*T(0)^1 + T(2)^1*T(1)^1 + T(2)^1*T(0)^2 + T(1)^2*T(0)^1 + T(1)^1*T(0)^3 + T(0)^5 = 20.
Forests for example (leaving out the "^0" factors for clarity):
F(2) = T(2)^1 + T(1)^2 = 3,
F(3) = T(3)^1 + T(2)^1*T(1)^1 + T(1)^3 = 7,
F(4) = T(4)^1 + T(3)^1*T(1)^1 + T(2)^2 + T(2)*T(1)^2 + T(1)^4 = 19,
F(5) = T(5)^1 + T(4)^1*T(1)^1 + T(3)^1*T(2)^1 + T(3)^1*T(1)^2 + T(2)^2*T(1)^1 + T(2)^1*T(1)^3 + T(1)^5 = 47.
{Examples of this a^b definition:
2^1 = 2, 2^2 = 3, 2^3 = 4, 2^4 = 5,
3^1 = 3, 3^2 = 6, 3^3 = 10, 3^4 = 15, (triangular numbers)
4^1 = 4, 4^2 = 10, 4^3 = 20, 4^4 = 35, (tetrahedral numbers)
equivalently a^b = (b == 0 ? 1 : (a == 1 || b == 1 ? a : (a * (a+1)^(b-1) / b))) }
		

Crossrefs

Cf. A000081 (rooted trees).
Cf. A093637 (products of partition numbers).

Programs

  • Maple
    (From N. J. A. Sloane, Nov 26 2010) First read 110 terms of A000081 into array b1
    M:=100;
    t1:=1/mul((1-x*y^i)^b1[i+1],i=2..M):
    t2:=series(t1,y,M):
    t3:=series(t2,x,M):
    a:=(n,k)->coeff(coeff(t3,x,k),y,n);
    g:=n->add(a(n-1+i,i),i=1..n-1);
    [seq(g(n),n=1..48)];
    # second Maple program:
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(T(i-1)+j-1, j) *g(n-i*j, i-1), j=0..n/i)))
        end:
    T:= n-> g(n, n):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(T(i)+j-1, j) *b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 20 2012
    # third Maple program:
    g:= proc(n) option remember; `if`(n<=1, n, (add(add(d*
          g(d), d=numtheory[divisors](j))*g(n-j), j=1..n-1))/(n-1))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          g(d+1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 19 2017
  • Mathematica
    g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[T[i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, n/i}]]]; T[n_] := g[n, n]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[T[i]+j-1, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n] // FullSimplify; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.955765285651994974714817524... is the Otter's rooted tree constant (see A051491), and c = 10.088029891871277227771831767... . - Vaclav Kotesovec, May 09 2014
a(n) = A033185(2n, n). - Alois P. Heinz, Feb 15 2016
a(n) = A033185(2n+k, n+k) for all n, k >= 0. - Michael Somos, Aug 20 2018

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 19 2017