A181360 Number of forests of rooted trees containing n nodes not counting the root nodes.
1, 1, 3, 7, 19, 47, 127, 330, 889, 2378, 6450, 17510, 47907, 131388, 362081, 1000665, 2774857, 7714695, 21505455, 60084062, 168234804, 471977022, 1326558625, 3734804268, 10531738149, 29742332548, 84111212892, 238176473946, 675269414372, 1916715819186
Offset: 0
Keywords
Examples
Trees for example (leaving out the "^0" factors for clarity): T(0) = 1, T(1) = 1 T(2) = T(1)^1 + T(0)^2 = 2, T(3) = T(2)^1 + T(1)^1*T(0)^1 + T(0)^3 = 4, T(4) = T(3)^1 + T(2)^1*T(0)^1 + T(1)^2 + T(1)^1*T(0)^2 +T(0)^4 = 9, T(5) = T(4)^1 + T(3)^1*T(0)^1 + T(2)^1*T(1)^1 + T(2)^1*T(0)^2 + T(1)^2*T(0)^1 + T(1)^1*T(0)^3 + T(0)^5 = 20. Forests for example (leaving out the "^0" factors for clarity): F(2) = T(2)^1 + T(1)^2 = 3, F(3) = T(3)^1 + T(2)^1*T(1)^1 + T(1)^3 = 7, F(4) = T(4)^1 + T(3)^1*T(1)^1 + T(2)^2 + T(2)*T(1)^2 + T(1)^4 = 19, F(5) = T(5)^1 + T(4)^1*T(1)^1 + T(3)^1*T(2)^1 + T(3)^1*T(1)^2 + T(2)^2*T(1)^1 + T(2)^1*T(1)^3 + T(1)^5 = 47. {Examples of this a^b definition: 2^1 = 2, 2^2 = 3, 2^3 = 4, 2^4 = 5, 3^1 = 3, 3^2 = 6, 3^3 = 10, 3^4 = 15, (triangular numbers) 4^1 = 4, 4^2 = 10, 4^3 = 20, 4^4 = 35, (tetrahedral numbers) equivalently a^b = (b == 0 ? 1 : (a == 1 || b == 1 ? a : (a * (a+1)^(b-1) / b))) }
Links
- N. J. A. Sloane and Alois P. Heinz, Table of n, a(n) for n = 0..2133
- A. Mansuy, Preordered forests, packed words and contraction algebras, J. Algebra 411 (2014) 259-311, section 4.1
- R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016.
Crossrefs
Programs
-
Maple
(From N. J. A. Sloane, Nov 26 2010) First read 110 terms of A000081 into array b1 M:=100; t1:=1/mul((1-x*y^i)^b1[i+1],i=2..M): t2:=series(t1,y,M): t3:=series(t2,x,M): a:=(n,k)->coeff(coeff(t3,x,k),y,n); g:=n->add(a(n-1+i,i),i=1..n-1); [seq(g(n),n=1..48)]; # second Maple program: g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(T(i-1)+j-1, j) *g(n-i*j, i-1), j=0..n/i))) end: T:= n-> g(n, n): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(T(i)+j-1, j) *b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n, n): seq(a(n), n=0..40); # Alois P. Heinz, Jul 20 2012 # third Maple program: g:= proc(n) option remember; `if`(n<=1, n, (add(add(d* g(d), d=numtheory[divisors](j))*g(n-j), j=1..n-1))/(n-1)) end: a:= proc(n) option remember; `if`(n=0, 1, add(add(d* g(d+1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Sep 19 2017
-
Mathematica
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[T[i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, n/i}]]]; T[n_] := g[n, n]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[T[i]+j-1, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n] // FullSimplify; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n / n^(3/2), where d = 2.955765285651994974714817524... is the Otter's rooted tree constant (see A051491), and c = 10.088029891871277227771831767... . - Vaclav Kotesovec, May 09 2014
a(n) = A033185(2n, n). - Alois P. Heinz, Feb 15 2016
a(n) = A033185(2n+k, n+k) for all n, k >= 0. - Michael Somos, Aug 20 2018
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 19 2017
Comments