cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181427 a(n) = n + [n^2 if n is odd or n^3 if n is even].

Original entry on oeis.org

2, 10, 12, 68, 30, 222, 56, 520, 90, 1010, 132, 1740, 182, 2758, 240, 4112, 306, 5850, 380, 8020, 462, 10670, 552, 13848, 650, 17602, 756, 21980, 870, 27030, 992, 32800, 1122, 39338, 1260, 46692, 1406, 54910, 1560, 64040, 1722, 74130, 1892, 85228, 2070
Offset: 1

Views

Author

Dinesh Panchamia (dgpanchamia(AT)gmail.com), Oct 19 2010

Keywords

Comments

a(2*k+1) = 2*A000384(k+1) (k in A001477). - Bruno Berselli, Oct 20 2010

Examples

			For n=5, 5+5^2=30 and n=6 6+6^3=222.
		

Crossrefs

Programs

  • Mathematica
    If[OddQ[ # ],#+#^2,#+#^3]&/@Range[50] (* Harvey P. Dale, Nov 03 2010 *)

Formula

a(n) = n + n^(2*(n mod 2)+3*(1-(n mod 2))).
a(n) = n + n^((5+(-1)^n)/2) = n*(1+A065679(n)).
G.f.: 2*x*(1+5*x+2x^2+14*x^3-3*x^4+5*x^5)/(1-x^2)^4.
a(n)-4*a(n-2)+6*a(n-4)-4*a(n-6)+a(n-8) = 0 for n>8.
a(2*n) = A034262(2*n). a(2*n+1) = A002939(n+1).

Extensions

Formulas and more terms from R. J. Mathar and Bruno Berselli, Oct 19 2010