cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181436 Numbers k such that the prime divisors of k^2 + 1 are of the form q^2 + 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 13, 14, 16, 20, 24, 26, 36, 38, 40, 43, 54, 56, 66, 68, 74, 84, 90, 94, 110, 116, 117, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176, 180, 183, 184, 204, 206, 210, 224, 230, 236, 240, 250, 256, 260, 264, 270, 280, 284, 293, 300, 306, 314, 326, 327
Offset: 1

Views

Author

Michel Lagneau, Jan 29 2011

Keywords

Examples

			183 is in the sequence because 183^2 + 1 = 2*5*17*197 and 2 = 1^2 + 1, 5 = 2^2+1, 17 = 4^2+1 and 197 = 14^2 + 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=1000:for n from 1 to nn do: x:=n^2+1:y:=factorset(x):ny:=nops(y):id:=0:for
      q from 1 to ny do: z:=y[q]-1:zz:=sqrt(z):if zz=floor(zz) then id:=id+1:else  fi:od:if id=ny then printf(`%d, `,n):else fi:od:
  • Mathematica
    Select[Range@330, And @@ IntegerQ /@ Sqrt[FactorInteger[#^2 + 1][[All, 1]] - 1] &] (* Ivan Neretin, Aug 31 2016 *)
  • PARI
    isok(n) = {fn = factor(n^2+1)[,1]; for (k=1, #fn, if (!issquare(fn[k]-1), return (0));); 1;} \\ Michel Marcus, Sep 01 2016