cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A171919 Number of solutions to n=x*y*z, x+y-z=1 with ordered triples (x,y,z), x,y,z>=1.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Georgi Guninski, Oct 23 2010

Keywords

Comments

Record values start a(1)=1, a(4)=2, a(112)=3, a(144)=6, a(23400)=8, a(28224)=10.
If n is a perfect square, a(n)>0.
Larger record indices are listed in A181485, and associated values in A181486. - M. F. Hasler, Oct 23 2010
First occurrence of k: 2, 1, 4, 112, 480, 43120, 144, 218880, 23400, ??, 28224, ??, 373464, ??, 247104, ??, 604800, ??, 83010312, ??, 26812800, ..., . - Robert G. Wilson v, Oct 30 2010
a(388778796252000) = 38.

Examples

			For n=4, the a(4)=2 solutions are (x,y,z)=(1,2,2) and (2,1,2).
For n=12, the a(12)=1 solution is (x,y,z)=(2,2,3).
		

Crossrefs

Programs

  • Maple
    A := proc(n) local a,dvs,x,y,z,dvsyz; a :=0 ; dvs := numtheory[divisors](n) ; for x in dvs do yz := n/x ; dvsyz := numtheory[divisors](yz) ; for y in dvsyz do z := yz/y ; if x+y-z=1 then a := a+1 ; fi; end do; end do:
    return a; end proc: seq(A(n),n=1..100) ; # R. J. Mathar, Oct 23 2010
  • Mathematica
    f[n_] := Block[{c = 0, cong = {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57}, dvs = Divisors@ n, dvt, j = 1, k, lmt1, lmt2}, If[ MemberQ[ cong, Mod[n, 60]], lmtj = Length@ dvs + 1; While[j < lmtj, dvt = Divisors[ n/dvs[[j]]]; k = 1; lmtk = Length@ dvt + 1; While[k < lmtk, If[ dvs[[j]] + dvt[[k]] == n/(dvs[[j]]*dvt[[k]]) + 1, c++ ]; k++ ]; j++ ]]; c]; Array[f, 105] (* Robert G. Wilson v, Oct 24 2010 *)
  • PARI
    A171919(n)={ my(c=0,t); fordiv(n, z, fordiv( t=n/z, y, y>z & break; y*(z+1-y)==t & c++) ); c} /* can be improved by restricting to x<=y and counting twice if xM. F. Hasler, Oct 23 2010

Extensions

Some more values from M. F. Hasler, Oct 23 2010

A181486 Record values in A171919 = number of solutions to n=x*y*z, x+y=z+1.

Original entry on oeis.org

1, 2, 3, 6, 8, 10, 14, 16, 20, 22, 24, 26, 28, 34, 38
Offset: 1

Views

Author

R. J. Mathar and M. F. Hasler, Oct 23 2010

Keywords

Comments

The sequence lists all m=A171919(n) such that m > A171919(k) for all k < n.
The indices n for which these record values are taken are given in A181485.
Larger numbers of solutions do occur, for example A171919(388778796252000) = 38 (although this may not even be a record). - Georgi Guninski, Jan 04 2011

Crossrefs

Programs

  • PARI
    m=0; for(n=1,1e9, A171919(n)>m | next; print1(m=A171919(n),", "))

Formula

Extensions

a(10)-a(13) from Donovan Johnson, Jun 14 2011
a(14)-a(15) from Robert Gerbicz, Apr 10 2012
Showing 1-2 of 2 results.