A181532 a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2; a(n) = a(n-1) + a(n-2) + a(n-4).
0, 1, 1, 2, 3, 6, 10, 18, 31, 55, 96, 169, 296, 520, 912, 1601, 2809, 4930, 8651, 15182, 26642, 46754, 82047, 143983, 252672, 443409, 778128, 1365520, 2396320, 4205249, 7379697, 12950466, 22726483, 39882198, 69988378, 122821042, 215535903, 378239143, 663763424
Offset: 0
Examples
a(7) = 18 = a(6) + a(5) + a(3) = 10 + 6 + 2. a(7) = 18 = (1 0, 2, 0, 2, 0, 3) dot (10, 6, 3, 2, 1, 1, 1) = (10 + 3 + 2 + 3).
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,1). [From _R. J. Mathar_, Oct 29 2010]
Crossrefs
All of A060945, A077930, A181532 are variations of the same sequence. - N. J. A. Sloane, Mar 04 2012
Programs
-
Mathematica
LinearRecurrence[{1,1,0,1},{0,1,1,2},40] (* Harvey P. Dale, Jun 20 2015 *)
Formula
a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2; a(n) = a(n-1) + a(n-2) + a(n-4).
G.f.: x/(1-x-x^2-x^4). [Franklin T. Adams-Watters, Feb 25 2011]
a(n) = A060945(n-1), n>1. [R. J. Mathar, Nov 03 2010]
Extensions
Values from a(9) on changed by R. J. Mathar, Oct 29 2010
Edited and a(0) added by Franklin T. Adams-Watters, Feb 25 2011
Comments